986 resultados para LASER FREQUENCY MEASUREMENTS
Resumo:
The recent development of in-situ monitoring devices, such as UV-spectrometers, makes the study of short-term stream chemistry variation relevant, especially the study of diurnal cycles, which are not yet fully understood. Our study is based on high-frequency data from an agricultural catchment (Studienlandschaft Schwingbachtal, Germany). We propose a novel approach, i.e. the combination of cluster analysis and Linear Discriminant Analysis, to mine from these data nitrate behavior patterns. As a result, we observe a seasonality of nitrate diurnal cycles, that differs from the most common cycle seasonality described in the literature, i.e. pre-dawn peaks in spring. Our cycles appear in summer and the maximum and minimum shift to a later time in late summer/autumn. This is observed both for water- and energy-limited years, thus potentially stressing the role of evapotranspiration. This concluding hypothesis on the role of evapotranspiration on nitrate stream concentration, which was obtained through data mining, broadens the perspective on the diurnal cycling of stream nitrate concentrations.
Resumo:
The satellite derived HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite data) and ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis data sets have been validated against in-situ precipitation measurements from ship rain gauges and optical disdrometers over the open-ocean by applying a statistical analysis for binary forecasts. For this purpose collocated pairs of data were merged within a certain temporal and spatial threshold into single events, according to the satellites' overpass, the observation and the forecast times. HOAPS detects the frequency of precipitation well, while ERA-Interim strongly overestimates it, especially in the tropics and subtropics. Although precipitation rates are difficult to compare because along-track point measurements are collocated with areal estimates and the numbers of available data are limited, we find that HOAPS underestimates precipitation rates, while ERA-Interim's Atlantic-wide average precipitation rate is close to measurements. However, regionally averaged over latitudinal belts, there are deviations between the observed mean precipitation rates and ERA-Interim. The most obvious ERA-Interim feature is an overestimation of precipitation in the area of the intertropical convergence zone and the southern sub-tropics over the Atlantic Ocean. For a limited number of snow measurements by optical disdrometers it can be concluded that both HOAPS and ERA-Interim are suitable to detect the occurrence of solid precipitation.