979 resultados para Kruppel-Like Transcription Factors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have recently reported that Notch 1, a member of the Notch multigene family, is essential for the development of murine T cells. Using a mouse model in which Notch 1 is inactivated in bone marrow (BM) precursors we have shown that B cells instead of T cells are found in the thymus of BM chimeras. However, it is not clear whether these B cells develop by default from a common lymphoid precursor due to the absence of Notch 1 signaling, or whether they arise as a result of perturbed migration of BM-derived B cells and/or altered homeostasis of normal resident thymic B cells. In this report we show that Notch 1-deficient thymic B cells resemble BM B cells in phenotype and turnover kinetics and are located predominantly in the medulla and corticomedullary junction. Peripheral blood lymphocyte analysis shows no evidence of recirculating Notch1(-/)- BM B cells. Furthermore, lack of T cell development is not due to a failure of Notch1(-/)- precursors to home to the thymus, as even after intrathymic reconstitution with BM cells, B cells instead of T cells develop from Notch 1-deficient precursors. Taken together, these results provide evidence for de novo ectopic B cell development in the thymus, and support the hypothesis that in the absence of Notch 1 common lymphoid precursors adopt the default cell fate and develop into B cells instead.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclooxygenase-derived prostaglandin E(2) (PGE(2)) is the predominant prostanoid found in most colorectal cancers (CRC) and is known to promote colon carcinoma growth and invasion. However, the key downstream signaling pathways necessary for PGE(2)-induced intestinal carcinogenesis are unclear. Here we report that PGE(2) indirectly transactivates PPARdelta through PI3K/Akt signaling, which promotes cell survival and intestinal adenoma formation. We also found that PGE(2) treatment of Apc(min) mice dramatically increased intestinal adenoma burden, which was negated in Apc(min) mice lacking PPARdelta. We demonstrate that PPARdelta is a focal point of crosstalk between the prostaglandin and Wnt signaling pathways which results in a shift from cell death to cell survival, leading to increased tumor growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IB1/JIP-1 is a scaffold protein that interacts with upstream components of the c-Jun N-terminal kinase (JNK) signaling pathway. IB1 is expressed at high levels in pancreatic beta cells and may therefore exert a tight control on signaling events mediated by JNK in these cells. Activation of JNK by interleukin 1 (IL-1beta) or by the upstream JNK constitutive activator DeltaMEKK1 promoted apoptosis in two pancreatic beta cell lines and decreased IB1 content by 50-60%. To study the functional consequences of the reduced IB1 content in beta cell lines, we used an insulin-secreting cell line expressing an inducible IB1 antisense RNA that lead to a 38% IB1 decrease. Reducing IB1 levels in these cells increased phosphorylation of c-Jun and increased the apoptotic rate in presence of IL-1beta. Nitric oxide production was not stimulated by expression of the IB1 antisense RNA. Complementary experiments indicated that overexpression of IB1 in insulin-producing cells prevented JNK-mediated activation of the transcription factors c-Jun, ATF2, and Elk1 and decreased IL-1beta- and DeltaMEKK1-induced apoptosis. These data indicate that IB1 plays an anti-apoptotic function in insulin-producing cells probably by controlling the activity of the JNK signaling pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the root-colonizing biocontrol strain CHA0 of Pseudomonas fluorescens, cell density-dependent synthesis of extracellular, plant-beneficial secondary metabolites and enzymes is positively regulated by the GacS/GacA two-component system. Mutational analysis of the GacS sensor kinase using improved single-copy vectors showed that inactivation of each of the three conserved phosphate acceptor sites caused an exoproduct null phenotype (GacS-), whereas deletion of the periplasmic loop domain had no significant effect on the expression of exoproduct genes. Strain CHA0 is known to synthesize a solvent-extractable extracellular signal that advances and enhances the expression of exoproduct genes during the transition from exponential to stationary growth phase when maximal exoproduct formation occurs. Mutational inactivation of either GacS or its cognate response regulator GacA abolished the strain's response to added signal. Deletion of the linker domain of the GacS sensor kinase caused signal-independent, strongly elevated expression of exoproduct genes at low cell densities. In contrast to the wild-type strain CHA0, the gacS linker mutant and a gacS null mutant were unable to protect tomato plants from crown and root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici in a soil-less microcosm, indicating that, at least in this plant-pathogen system, there is no advantage in using a signal-independent biocontrol strain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptors are a family of three ligand-activated transcription factors. Fibrate antihyperlipidemic drugs and thiazolidinedione antihyperglycemic drugs were recently identified as synthetic ligands for these receptors. In addition, certain unsaturated fatty acids and eicosanoids were shown to bind the receptors, and thus represent naturally occurring PPAR ligands. The synthetic and natural ligands have proven to be powerful tools in dissecting the biology of these orphan receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A central question in developmental biology is how multicellular organisms coordinate cell division and differentiation to determine organ size. In Arabidopsis roots, this balance is controlled by cytokinin-induced expression of SHORT HYPOCOTYL 2 (SHY2) in the so-called transition zone of the meristem, where SHY2 negatively regulates auxin response factors (ARFs) by protein-protein interaction. The resulting down-regulation of PIN-FORMED (PIN) auxin efflux carriers is considered the key event in promoting differentiation of meristematic cells. Here we show that this regulation involves additional, intermediary factors and is spatio-temporally constrained. We found that the described cytokinin-auxin crosstalk antagonizes BREVIS RADIX (BRX) activity in the developing protophloem. BRX is an auxin-responsive target of the prototypical ARF MONOPTEROS (MP), a key promoter of vascular development, and transiently enhances PIN3 expression to promote meristem growth in young roots. At later stages, cytokinin induction of SHY2 in the vascular transition zone restricts BRX expression to down-regulate PIN3 and thus limit meristem growth. Interestingly, proper SHY2 expression requires BRX, which could reflect feedback on the auxin responsiveness of SHY2 because BRX protein can directly interact with MP, likely acting as a cofactor. Thus, cross-regulatory antagonism between BRX and SHY2 could determine ARF activity in the protophloem. Our data suggest a model in which the regulatory interactions favor BRX expression in the early proximal meristem and SHY2 prevails because of supplementary cytokinin induction in the later distal meristem. The complex equilibrium of this regulatory module might represent a universal switch in the transition toward differentiation in various developmental contexts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three peroxisome proliferator-activated receptors (PPAR alpha, PPAR beta, and PPAR gamma) are ligand-activated transcription factors belonging to the nuclear hormone receptor superfamily. They are regarded as being sensors of physiological levels of fatty acids and fatty acid derivatives. In the adult mouse skin, they are found in hair follicle keratinocytes but not in interfollicular epidermis keratinocytes. Skin injury stimulates the expression of PPAR alpha and PPAR beta at the site of the wound. Here, we review the spatiotemporal program that triggers PPAR beta expression immediately after an injury, and then gradually represses it during epithelial repair. The opposing effects of the tumor necrosis factor-alpha and transforming growth factor-beta-1 signalling pathways on the activity of the PPAR beta promoter are the key elements of this regulation. We then compare the involvement of PPAR beta in the skin in response to an injury and during hair morphogenesis, and underscore the similarity of its action on cell survival in both situations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficient initiation of SV40 DNA replication requires transcription factors that bind auxiliary sequences flanking the minimally required origin. To evaluate the possibility that transcription factors may activate SV40 replication by acting on the chromatin structure of the origin, we used an in vivo replication system in which we targeted GAL4 fusion proteins to the minimally required origin. We found that the proline-rich transcriptional activation domain of nuclear factor I (NF-I), which has been previously shown to interact with histone H3, specifically activates replication. Evaluation of a series of deletion and point mutants of NF-I indicates that the H3-binding domain and the replication activity coincide perfectly. Assays with other transcription factors, such as Sp1, confirmed the correlation between the interaction with H3 and the activation of replication. These findings imply that transcription factors such as NF-I can activate SV40 replication via direct interaction with chromatin components, thereby contributing to the relief of nucleosomal repression at the SV40 origin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear receptors (NRs) are ligand-dependent transcription factors whose activation affects genes controlling vital processes. Among them, the peroxisome proliferator-activated receptors (PPARs) have emerged as links between lipids, metabolic diseases, and innate immunity. PPARs are activated by fatty acids and their derivatives, many of which also signal through membrane receptors, thereby creating a lipid signaling network between the cell surface and the nucleus. Tissues that play a role in whole-body metabolic homeostasis, such as adipose tissue, liver, skeletal muscle, intestines, and blood vessel walls, are prone to inflammation when metabolism is disturbed, a complication that promotes type 2 diabetes and cardiovascular disease. This review discusses the protective roles of PPARs in inflammatory conditions and the therapeutic anti-inflammatory potential of PPAR ligands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The continuous production of vascular tissues through secondary growth results in radial thickening of plant organs and is pivotal for various aspects of plant growth and physiology, such as water transport capacity or resistance to mechanical stress. It is driven by the vascular cambium, which produces inward secondary xylem and outward secondary phloem. In the herbaceous plant Arabidopsis thaliana (Arabidopsis), secondary growth occurs in stems, in roots and in the hypocotyl. In the latter, radial growth is most prominent and not obscured by parallel ongoing elongation growth. Moreover, its progression is reminiscent of the secondary growth mode of tree trunks. Thus, the Arabidopsis hypocotyl is a very good model to study basic molecular mechanisms of secondary growth. Genetic approaches have succeeded in the identification of various factors, including peptides, receptors, transcription factors and hormones, which appear to participate in a complex network that controls radial growth. Many of these players are conserved between herbaceous and woody plants. In this review, we will focus on what is known about molecular mechanisms and regulators of vascular secondary growth in the Arabidopsis hypocotyl.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PPARs are members of the nuclear hormone receptor superfamily and are primarily involved in lipid metabolism. The expression patterns of all 3 PPAR isotypes in 22 adult rat organs were analyzed by a quantitative ribonuclease protection assay. The data obtained allowed comparison of the expression of each isotype to the others and provided new insight into the less studied PPAR beta (NR1C2) expression and function. This isotype shows a ubiquitous expression pattern and is the most abundant of the three PPARs in all analyzed tissues except adipose tissue. Its expression is especially high in the digestive tract, in addition to kidney, heart, diaphragm, and esophagus. After an overnight fast, PPAR beta mRNA levels are dramatically down-regulated in liver and kidney by up to 80% and are rapidly restored to control levels upon refeeding. This tight nutritional regulation is independent of the circulating glucocorticoid levels and the presence of PPAR alpha, whose activity is markedly up-regulated in the liver and small intestine during fasting. Finally, PPAR gamma 2 mRNA levels are decreased by 50% during fasting in both white and brown adipose tissue. In conclusion, fasting can strongly influence PPAR expression, but in only a few selected tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes is a recognized risk factor for cardiovascular diseases and heart failure. Diabetic cardiovascular dysfunction also underscores the development of diabetic retinopathy, nephropathy and neuropathy. Despite the broad availability of antidiabetic therapy, glycemic control still remains a major challenge in the management of diabetic patients. Hyperglycemia triggers formation of advanced glycosylation end products (AGEs), activates protein kinase C, enhances polyol pathway, glucose autoxidation, which coupled with elevated levels of free fatty acids, and leptin have been implicated in increased generation of superoxide anion by mitochondria, NADPH oxidases and xanthine oxidoreductase in diabetic vasculature and myocardium. Superoxide anion interacts with nitric oxide forming the potent toxin peroxynitrite via diffusion limited reaction, which in concert with other oxidants triggers activation of stress kinases, endoplasmic reticulum stress, mitochondrial and poly(ADP-ribose) polymerase 1-dependent cell death, dysregulates autophagy/mitophagy, inactivates key proteins involved in myocardial calcium handling/contractility and antioxidant defense, activates matrix metalloproteinases and redox-dependent pro-inflammatory transcription factors (e.g. nuclear factor kappaB) promoting inflammation, AGEs formation, eventually culminating in myocardial dysfunction, remodeling and heart failure. Understanding the complex interplay of oxidative/nitrosative stress with pro-inflammatory, metabolic and cell death pathways is critical to devise novel targeted therapies for diabetic cardiomyopathy, which will be overviewed in this brief synopsis. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CREB is a cAMP-responsive nuclear DNA-binding protein that binds to cAMP response elements and stimulates gene transcription upon activation of the cAMP signalling pathway. The protein consists of an amino-terminal transcriptional transactivation domain and a carboxyl-terminal DNA-binding domain (bZIP domain) comprised of a basic region and a leucine zipper involved in DNA recognition and dimerization, respectively. Recently, we discovered a testis-specific transcript of CREB that contains an alternatively spliced exon encoding multiple stop codons. CREB encoded by this transcript is a truncated protein lacking the bZIP domain. We postulated that the antigen detected by CREB antiserum in the cytoplasm of germinal cells is the truncated CREB that must also lack its nuclear translocation signal (NTS). To test this hypothesis we prepared multiple expression plasmids encoding carboxyl-terminal deletions of CREB and transiently expressed them in COS-1 cells. By Western immunoblot analysis as well as immunocytochemistry of transfected cells, we show that CREB proteins truncated to amino acid 286 or shorter are sequestered in the cytoplasm, whereas a CREB of 295 amino acids is translocated into the nucleus. Chimeric CREBs containing a heterologous NTS fused to the first 248 or 261 amino acids of CREB are able to drive the translocation of the protein into the nucleus. Thus, the nine amino acids in the basic region involved in DNA recognition between positions 287 and 295 (RRKKKEYVK) of CREB contain the NTS. Further, mutation of the lysine at position 290 in CREB to an asparagine diminishes nuclear translocation of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The success of biocontrol bacteria in soil depends in part on their ability to escape predation. We explored the interactions between Pseudomonas strain DSS73 and two predators, the nematode Caenorhabditis elegans and the flagellate Cercomonas sp. Growth of the nematode in liquid culture was arrested when it was feeding on DSS73 or a DSS73 mutant (DSS73-15C2) unable to produce the biosurfactant amphisin, whereas a regulatory gacS mutant (DSS73-12H8) that produces no exoproducts supported fast growth of the nematode. The flagellate Cercomonas sp. was able to grow on all three strains. The biosurfactant-deficient DSS73 mutant caused severe dilation of the nematode gut. In three-species systems (DSS73, Cercomonas and C. elegans), the nematodes fed on the flagellates, which in turn grazed the bacteria and the number of C. elegans increased. The flagellates Cercomonas sp. usually kill C. elegans. However, DSS73 protected the nematodes from flagellate killing. Soil microcosms inoculated with six rhizobacteria and grazed by nematodes were colonized more efficiently by DSS73 than similar systems grazed by flagellates or without grazers. In conclusion, our results suggest that C. elegans and DSS73 mutually increase the survival of one another in complex multispecies systems and that this interaction depends on the GacS regulator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Notch and Calcineurin/NFAT pathways have both been implicated in control of keratinocyte differentiation. Induction of the p21(WAF1/Cip1) gene by Notch 1 activation in differentiating keratinocytes is associated with direct targeting of the RBP-Jkappa protein to the p21 promoter. We show here that Notch 1 activation functions also through a second Calcineurin-dependent mechanism acting on the p21 TATA box-proximal region. Increased Calcineurin/NFAT activity by Notch signaling involves downregulation of Calcipressin, an endogenous Calcineurin inhibitor, through a HES-1-dependent mechanism. Besides control of the p21 gene, Calcineurin contributes significantly to the transcriptional response of keratinocytes to Notch 1 activation, both in vitro and in vivo. In fact, deletion of the Calcineurin B1 gene in the skin results in a cyclic alopecia phenotype, associated with altered expression of Notch-responsive genes involved in hair follicle structure and/or adhesion to the surrounding mesenchyme. Thus, an important interconnection exists between Notch 1 and Calcineurin-NFAT pathways in keratinocyte growth/differentiation control.