990 resultados para Kovach, Kelly
Resumo:
Attention deficit hyperactivity disorder (ADHD) and autism are two neurodevelopmental disorders associated with prominent executive dysfunction, which may be underpinned by disruption within fronto-striatal and fronto-parietal circuits. We probed executive function in these disorders using a sustained attention task with a validated brain-behaviour basis. Twenty-three children with ADHD, 21 children with high-functioning autism (HFA) and 18 control children were tested on the Sustained Attention to Response Task (SART). In a fixed sequence version of the task, children were required to withhold their response to a predictably occurring no-go target (3) in a 1-9 digit sequence; in the random version the sequence was unpredictable. The ADHD group showed clear deficits in response inhibition and sustained attention, through higher errors of commission and omission on both SART versions. The HFA group showed no sustained attention deficits, through a normal number of omission errors on both SART versions. The HFA group showed dissociation in response inhibition performance, as indexed by commission errors. On the Fixed SART, a normal number of errors was made, however when the stimuli were randomised, the HFA group made as many commission errors as the ADHD group. Greater slow-frequency variability in response time and a slowing in mean response time by the ADHD group suggested impaired arousal processes. The ADHD group showed greater fast-frequency variability in response time, indicative of impaired top-down control, relative to the HFA and control groups. These data imply involvement of fronto-parietal attentional networks and sub-cortical arousal systems in the pathology of ADHD and prefromal cortex dysfunction in children with HFA. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Response time (RT) variability is a common finding in ADHD research. RT variability may reflect frontal cortex function and may be related to deficits in sustained attention. The existence of a sustained attention deficit in ADHD has been debated, largely because of inconsistent evidence of time-on-task effects. A fixed-sequence Sustained Attention to Response Task (SART) was given to 29 control, 39 unimpaired and 24 impaired-ADHD children (impairment defined by the number of commission errors). The response time data were analysed using the Fast Fourier Transform, to define the fast-frequency and slow-frequency contributions to overall response variability. The impaired-ADHD group progressively slowed in RT over the course of the 5.5 min task, as reflected in this group's greater slow-frequency variability. The fast-frequency trial-to-trial variability was also significantly greater, but did not differentially worsen over the course of the task. The higher error rates of the impaired-ADHD group did not become differentially greater over the length of the task. The progressive slowing in mean RT over the course of the task may relate to a deficit in arousal in the impaired-ADHD group. The consistently poor performance in fast-frequency variability and error rates may be due to difficulties in sustained attention that fluctuate on a trial-to-trial basis. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Patients with bronchiectasis often have impaired quality of life (QoL), which deteriorates with exacerbations. The aim of this study was to investigate changes in QoL and how these were influenced by changes in airway physiology and inflammation in patients with bronchiectasis before and after resolution of an exacerbation. Sputum induction and a QoL questionnaire were undertaken on the first day, day 14, and 4 weeks after completion of intravenous antibiotics (day 42). Eighteen patients (12 female) were recruited, median (IQ range) age of 54 (47–60) years. There was a trend towards an improvement in lung function from visit 1 to visit 2, but this was not statistically significant. C-reactive protein (CRP) [mean (SEM)] reduced between visit 1 and visit 2 [55.4 (21.5) vs 9.4 (3.1) mg/L, P = 0.03] but did not increase significantly on visit 3 [44.4 (32.9) mg/L, P = 0.27]. The median (interquartile range) sputum cell count (×106 cells/g of sputum) decreased from visit 1 to visit 2 [21.6 (11.8–37.6)–13.3 (6.7–22.9) × 106 cells/g, respectively, P = 0.008] and increased from visit 2 to visit 3 [26.3 (14.1–33.6) × 106 cells/g, P = 0.03]. All soluble markers of inflammation significantly reduced from visit 1 to visit 2 but increased on visit 3 with the exception of TNF-a. Regarding QoL, three of the four domains (dyspnoea, emotional, mastery) significantly improved from visit 1 to visit 2 but did not change between visit 2 and visit 3. The improvements in QoL scores could not be explained by the improvements in lung function or inflammatory markers.
Resumo:
H-3(+) is the simplest triatomic molecule and plays an important role in laboratory and astrophysical plasmas. It is very stable both in terms of its electronic and nuclear degrees of freedom but is difficult to study in depth in the laboratory due to its ionic nature. In this communication, experimental results are presented for the strong field dissociation of the isotopic analogue D-3(+), using 30 fs, 800 nm laser pulses with intensities up to 10(16) W cm(-2). By employing a novel experimental set-up, ions were confined in an electrostatic ion trap so that dissociation of the molecule could be studied as it radiatively cools. It was determined that dissociation could only be observed for molecules in ro-vibrational states relatively close to the dissociation limit, while more tightly bound states demonstrated remarkable stability in even the strongest fields.
Resumo:
An electrostatic trapping scheme for use in the study of light-induced dissociation of molecular ions is outlined. We present a detailed description of the electrostatic reflection storage device and specifically demonstrate its use in the preparation of a vibrationally cold ensemble of deuterium hydride (HD+) ions. By interacting an intense femtosecond laser with this target and detecting neutral fragmentation products, we are able to elucidate previously inaccessible dissociation dynamics for fundamental diatomics in intense laser fields. In this context, we present new results of intense field dissociation of HD+ which are interpreted in terms of recent theoretical calculations.