960 resultados para Kinematic analysis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although complementary and alternative therapies (CATs) are utilised widely for treating psychological disorders, little research has examined psychologists' beliefs about integrating CAT into psychological practice. Six practicing psychologists and six psychology students were interviewed about their CAT integration beliefs, in particular integrating CAT into clinical practice via recommending CATs, offering referrals to CAT practitioners, or undertaking training to utilise CATs within psychological practice. Guided broadly from a theory of planned behaviour perspective, participants raised a number of costs and benefits, discussed referent groups who would influence their decisions, and suggested motivators and barriers for integration. A number of additional themes were raised, including risks, such as the possibility of litigation and the need for clear Society guidelines, as most participants were unclear about what constitutes appropriate practice. Identifying these themes serves as an important initial step to informing discussion and policy for this emerging practice issue within psychology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinematic models are commonly used to quantify foot and ankle kinematics, yet no marker sets or models have been proven reliable or accurate when wearing shoes. Further, the minimal detectable difference of a developed model is often not reported. We present a kinematic model that is reliable, accurate and sensitive to describe the kinematics of the foot–shoe complex and lower leg during walking gait. In order to achieve this, a new marker set was established, consisting of 25 markers applied on the shoe and skin surface, which informed a four segment kinematic model of the foot–shoe complex and lower leg. Three independent experiments were conducted to determine the reliability, accuracy and minimal detectable difference of the marker set and model. Inter-rater reliability of marker placement on the shoe was proven to be good to excellent (ICC = 0.75–0.98) indicating that markers could be applied reliably between raters. Intra-rater reliability was better for the experienced rater (ICC = 0.68–0.99) than the inexperienced rater (ICC = 0.38–0.97). The accuracy of marker placement along each axis was <6.7 mm for all markers studied. Minimal detectable difference (MDD90) thresholds were defined for each joint; tibiocalcaneal joint – MDD90 = 2.17–9.36°, tarsometatarsal joint – MDD90 = 1.03–9.29° and the metatarsophalangeal joint – MDD90 = 1.75–9.12°. These thresholds proposed are specific for the description of shod motion, and can be used in future research designed at comparing between different footwear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The greatly increased risk of being killed or injured in a car crash for the young novice driver has been recognised in the road safety and injury prevention literature for decades. Risky driving behaviour has consistently been found to contribute to traffic crashes. Researchers have devised a number of instruments to measure this risky driving behaviour. One tool developed specifically to measure the risky behaviour of young novice drivers is the Behaviour of Young Novice Drivers Scale (BYNDS) (Scott-Parker et al., 2010). The BYNDS consists of 44 items comprising five subscales for transient violations, fixed violations, misjudgement, risky driving exposure, and driving in response to their mood. The factor structure of the BYNDS has not been examined since its development in a matched sample of 476 novice drivers aged 17-25 years. Method: The current research attempted to refine the BYNDS and explore its relationship with the self-reported crash and offence involvement and driving intentions of 390 drivers aged 17-25 years (M = 18.23, SD = 1.58) in Queensland, Australia, during their first six months of independent driving with a Provisional (intermediate) driver’s licence. A confirmatory factor analysis was undertaken examining the fit of the originally proposed BYNDS measurement model. Results: The model was not a good fit to the data. A number of iterations removed items with low factor loadings, resulting in a 36-item revised BYNDS which was a good fit to the data. The revised BYNDS was highly internally consistent. Crashes were associated with fixed violations, risky driving exposure, and misjudgement; offences were moderately associated with risky driving exposure and transient violations; and road-rule compliance intentions were highly associated with transient violations. Conclusions: Applications of the BYNDS in other young novice driver populations will further explore the factor structure of both the original and revised BYNDS. The relationships between BYNDS subscales and self-reported risky behaviour and attitudes can also inform countermeasure development, such as targeting young novice driver non-compliance through enforcement and education initiatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Footwear is designed to reduce injury, and enhance performance. However, the effect footwear has on foot and ankle kinematics currently remains unknown. Acknowledging the need for improved understanding, multi-segment models of the foot-shoe complex need to be established to both describe and quantify the effect footwear has on the foot and ankle during stance phase of gait. The purpose of this study was to quantify how footwear alters the kinematics of the foot inside the shoe during stance phase of walking gait.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1999 Richards compared the accuracy of commercially available motion capture systems commonly used in biomechanics. Richards identified that in static tests the optical motion capture systems generally produced RMS errors of less than 1.0 mm. During dynamic tests, the RMS error increased to up to 4.2 mm in some systems. In the last 12 years motion capture systems have continued to evolve and now include high-resolution CCD or CMOS image sensors, wireless communication, and high full frame sampling frequencies. In addition to hardware advances, there have also been a number of advances in software, which includes improved calibration and tracking algorithms, real time data streaming, and the introduction of the c3d standard. These advances have allowed the system manufactures to maintain a high retail price in the name of advancement. In areas such as gait analysis and ergonomics many of the advanced features such as high resolution image sensors and high sampling frequencies are not required due to the nature of the task often investigated. Recently Natural Point introduced low cost cameras, which on face value appear to be suitable as at very least a high quality teaching tool in biomechanics and possibly even a research tool when coupled with the correct calibration and tracking software. The aim of the study was therefore to compare both the linear accuracy and quality of angular kinematics from a typical high end motion capture system and a low cost system during a simple task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virtual prototyping emerges as a new technology to replace existing physical prototypes for product evaluation, which are costly and time consuming to manufacture. Virtualization technology allows engineers and ergonomists to perform virtual builds and different ergonomic analyses on a product. Digital Human Modelling (DHM) software packages such as Siemens Jack, often integrate with CAD systems to provide a virtual environment which allows investigation of operator and product compatibility. Although the integration between DHM and CAD systems allows for the ergonomic analysis of anthropometric design, human musculoskeletal, multi-body modelling software packages such as the AnyBody Modelling System (AMS) are required to support physiologic design. They provide muscular force analysis, estimate human musculoskeletal strain and help address human comfort assessment. However, the independent characteristics of the modelling systems Jack and AMS constrain engineers and ergonomists in conducting a complete ergonomic analysis. AMS is a stand alone programming system without a capability to integrate into CAD environments. Jack is providing CAD integrated human-in-the-loop capability, but without considering musculoskeletal activity. Consequently, engineers and ergonomists need to perform many redundant tasks during product and process design. Besides, the existing biomechanical model in AMS uses a simplified estimation of body proportions, based on a segment mass ratio derived scaling approach. This is insufficient to represent user populations anthropometrically correct in AMS. In addition, sub-models are derived from different sources of morphologic data and are therefore anthropometrically inconsistent. Therefore, an interface between the biomechanical AMS and the virtual human model Jack was developed to integrate a musculoskeletal simulation with Jack posture modeling. This interface provides direct data exchange between the two man-models, based on a consistent data structure and common body model. The study assesses kinematic and biomechanical model characteristics of Jack and AMS, and defines an appropriate biomechanical model. The information content for interfacing the two systems is defined and a protocol is identified. The interface program is developed and implemented through Tcl and Jack-script(Python), and interacts with the AMS console application to operate AMS procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past decade our understanding of foot function has increased significantly[1,2]. Our understanding of foot and ankle biomechanics appears to be directly correlated to advances in models used to assess and quantify kinematic parameters in gait. These advances in models in turn lead to greater detail in the data. However, we must consider that the level of complexity is determined by the question or task being analysed. This systematic review aims to provide a critical appraisal of commonly used marker sets and foot models to assess foot and ankle kinematics in a wide variety of clinical and research purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When compared with similar joint arthroplasties, the prognosis of Total Ankle Replacement (TAR) is not satisfactory although it shows promising results post surgery. To date, most models do not provide the full anatomical functionality and biomechanical range of motion of the healthy ankle joint. This has sparked additional research and evaluation of clinical outcomes in order to enhance ankle prosthesis design. However, the limited biomechanical data that exist in literature are based upon two-dimensional, discrete and outdated techniques1 and may be inaccurate. Since accurate force estimations are crucial to prosthesis design, a paper based on a new biomechanical modeling approach, providing three dimensional forces acting on the ankle joint and the surrounding tissues was published recently, but the identified forces were suspected of being under-estimated, while muscles were . The present paper reports an attempt to improve the accuracy of the analysis by means of novel methods for kinematic processing of gait data, provided in release 4.1 of the AnyBody Modeling System (AnyBody Technology, Aalborg, Denmark) Results from the new method are shown and remaining issues are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, Opinion Mining is getting more important than before especially in doing analysis and forecasting about customers’ behavior for businesses purpose. The right decision in producing new products or services based on data about customers’ characteristics means profit for organization/company. This paper proposes a new architecture for Opinion Mining, which uses a multidimensional model to integrate customers’ characteristics and their comments about products (or services). The key step to achieve this objective is to transfer comments (opinions) to a fact table that includes several dimensions, such as, customers, products, time and locations. This research presents a comprehensive way to calculate customers’ orientation for all possible products’ attributes. A use case study is also presented in this paper to show the advantages of using OLAP and data cubes to analyze costumers’ opinions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the formulation for the free vibration of joined conical-cylindrical shells with uniform thickness using the transfer of influence coefficient for identification of structural characteristics. These characteristics are importance for structural health monitoring to develop model. This method was developed based on successive transmission of dynamic influence coefficients, which were defined as the relationships between the displacement and the force vectors at arbitrary nodal circles of the system. The two edges of the shell having arbitrary boundary conditions are supported by several elastic springs with meridional/axial, circumferential, radial and rotational stiffness, respectively. The governing equations of vibration of a conical shell, including a cylindrical shell, are written as a coupled set of first order differential equations by using the transfer matrix of the shell. Once the transfer matrix of a single component has been determined, the entire structure matrix is obtained by the product of each component matrix and the joining matrix. The natural frequencies and the modes of vibration were calculated numerically for joined conical-cylindrical shells. The validity of the present method is demonstrated through simple numerical examples, and through comparison with the results of previous researchers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the missing covariate problem which is often encountered in survival analysis. Three covariate imputation methods are employed in the study, and the effectiveness of each method is evaluated within the hazard prediction framework. Data from a typical engineering asset is used in the case study. Covariate values in some time steps are deliberately discarded to generate an incomplete covariate set. It is found that although the mean imputation method is simpler than others for solving missing covariate problems, the results calculated by it can differ largely from the real values of the missing covariates. This study also shows that in general, results obtained from the regression method are more accurate than those of the mean imputation method but at the cost of a higher computational expensive. Gaussian Mixture Model (GMM) method is found to be the most effective method within these three in terms of both computation efficiency and predication accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subtalar joint has been presumed to account for most of the pathologic motion in the foot and ankle, but research has shown that motion at other foot joints is greater than traditionally expected. Although recent research demonstrates the complexity of the kinematic variables in the foot and ankle, it still fails to expand our knowledge of the role of the musculotendinous structures in the biomechanics of the foot and ankle and how this is affected by in-shoe orthoses. The aim of this study was to simulate the effect of in-shoe foot orthoses by manipulation of the ground reaction force (GRF) components and centre of pressure (CoP) to demonstrate the resultant effect on muscle force in selected muscles during both the rearfoot loading response and stance phase of the gait cycle. We found that any medial wedge increases ankle joint load during gait cycle, while a lateral wedge decreases the joint load during the stance phase.