936 resultados para Judiciary institution


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of gyro-dynamic forces to counteract the wave-induced roll motion of marine vessels in a seaway was proposed over 100 years ago. These early systems showed a remarkable performance, reporting roll reductions of up to 95% in some sailing conditions. Despite this success, further developments were not pursued since the systems were unable to provide acceptable performance over an extended envelope of sailing and environmental conditions, and the invention of fin roll stabilisers provided a satisfactory alternative. This has been attributed to simplistic controls, heavy drive systems, and large structural mass required to withstand the loads given the low strength materials available at the time. Today, advances in material strength, bearings, motor technology and mechanical design methods, together with powerful signal processing algorithms, has resulted in a revitalized interest in gyro-stabilisers for ships. Advanced control systems have enabled optimisation of restoring torques across a range of wave environments and sailing conditions through adaptive control system design. All of these improvements have resulted in increased spinning speed, lower mass, and dramatically increased stabilising performance. This brief paper provides an overview of recent developments in the design and control of gyro-stabilisers of ship roll motion. In particular, the novel Halcyon Gyro-Stabilisers are introduced, and their performance is illustrated based on a simulation case study for a naval patrol vessel. Given the growing national and global interest in small combatants and patrol vessels, modem gyro-stabilisers may offer a significant technological contribution to the age old problem of comfort and mission operability on small ships, especially at loiter speeds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The factors influencing both teacher and student readiness to use Facebook as part of their teaching and learning in a vocational educational institution were studied through a qualitative case study. Data included teacher and student questionnaire and focus group interviews. While it was found that the students demonstrated readiness and willingness to incorporate Facebook into their current learning, the teachers were more reluctant. Different perceptions around control of learning, time, and concerns around compartmentalisation of learning and social lives would need to be addressed before Facebook could be used as a formal learner engagement strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of circular hollow steel members has attracted a great deal of attention during past few years because of having excellent structural properties, aesthetic appearance, corrosion and fire protection capability. However, no one can deny the structural deficiency of such structures due to reduction of strength when they are exposed to severe environmental conditions such as marine environment, cold and hot weather. Hence strengthening and retrofitting of structural steel members is now very imperative. This paper presents the findings of a research program that was conducted to study the bond durability of carbon fibre-reinforced polymer (CFRP) strengthened steel tubular members under cold weather and tested under four-point bending. Six number of CFRP-strengthened specimens and one unstrengthened specimen were considered in this program. The three specimens having sand blasted surface to be strengthened was pre-treated with MBrace primer and other three were remained untreated and then cured under ambient temperature at least four weeks and cold weather (3 C) for three and six months period of time. Quasi-static tests were then performed on beams to failure under four-point bending. The structural response of each specimen was predicted in terms of failure load, mid-span deflection, composite beam behaviour and failure mode. The research outcomes show that the cold weather immersion had an adverse effect on durability of CFRP-strengthened steel structures. Moreover, the epoxy based adhesion promoter was found to enhance the bond durability in plastic range. The analytical models presented in this study were found to be in good agreement in terms of predicting ultimate load and deflection. Finally, design factors are proposed to address the short-terms durability performance under cold weather.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on a current initiative at Queensland University of Technology to provide timely, flexible and sustainable training and support to academic staff in blended learning and associated techno-pedagogies via a web-conferencing classroom and collaboration tool, Elluminate Live!. This technology was first introduced to QUT in 2008 as part of the university‘s ongoing commitment to meeting the learning needs of diverse student cohorts. The centralised Learning Design team, in collaboration with the university‘s department of eLearning Services, was given the task of providing training and support to academic staff in the effective use of the technology for teaching and learning, as part of the team‘s ongoing brief to support and enhance the provision of blended learning throughout the university. The resulting program, ―Learning Design Live‖ (LDL) is informed by Rogers‘ theory of innovation and diffusion (2003) and structured according to Wilson‘s framework for faculty development (2007). This paper discusses the program‘s design and structure, considers the program‘s impact on academic capacity in blended learning within the institution, and reflects on future directions for the program and emerging insights into blended learning and participant engagement for both staff and students.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND As engineering schools adopt outcomes - focused learning approaches in response to government expectations and industry requirements of graduates capable of learning and applying knowledge in different contexts, university academics must be capable of developing and delivering programs that meet these requirements. Those academics are increasingly facing challenges in progressing their research and also acquiring different skill sets to meet the learning and teaching requirements. PURPOSE The goal of this study was to identify the types of development and support structures in place for academic staff, especially early career ones, and examine how the type of institution and the rank or role of the staff member affects these structures. DESIGN/METHOD We conducted semi - structured interviews with 21 individuals in a range of positions pertaining to teaching and learning in engineering education. Open coding was used to identify main themes from the guiding questions raised in the interviews and refined to address themes relevant to the development of institutional staff . The interview data was then analysed based on the type of institution and the rank/ role of the participant. RESULTS While development programs that focus on improving teaching and learning are available, the approach on using these types of programs differed based on staff perspective. Fewer academics, regardless of rank/role, had knowledge of support structures related to other areas of scholarship, e.g. disciplinary research, educational research, learning the institutional culture. The type of institution also impacted how they weighted and encouraged multiple forms of scholarship. We found that academic staff holding higher ranking positions, e.g. dean or associate dean, were not only concerned with the success of their respective programs, but also in how to promote other academic staff participation throughout the process. CONCLUSIONS The findings from this stud y extend the premise that developing effective academic staff ultimately leads to more effective institutions and successful graduates and accomplishing this requires staff buy - in at multiple stages of instructional and program development. Staff and administration developing approaches for educational innovation together (Besterfield - Sacre et al., 2014) and getting buy - in from all academic staff to invest in engineering education development will ultimately lead to more successful engineering graduates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is growing interest in the biomechanics of ‘fusionless’ implant constructs used for deformity correction in the thoracic spine, however, there are questions over the comparability of in vitro biomechanical studies from different research groups due to the various methods used for specimen preparation, testing and data collection. The aim of this study was to identify the effect of two key factors on the stiffness of immature bovine thoracic spine motion segments: (i) repeated cyclic loading and (ii) multiple freeze-thaw cycles, to aid in the planning and interpretation of in vitro studies. Two groups of thoracic spine motion segments from 6-8 week old calves were tested in flexion/extension, right/left lateral bending, and right/left axial rotation under moment control. Group (A) were tested with continuous repeated cyclic loading for 500 cycles with data recorded at cycles 3, 5, 10, 25, 50, 100, 200, 300, 400 and 500. Group (B) were tested after each of five freeze-thaw sequences, with data collected from the 10th load cycle in each sequence. Group A: Flexion/extension stiffness reduced significantly over the 500 load cycles (-22%; P=0.001), but there was no significant change between the 5th and 200th load cycles. Lateral bending stiffness decreased significantly (-18%; P=0.009) over the 500 load cycles, but there was no significant change in axial rotation stiffness (P=0.137). Group B: There was no significant difference between mean stiffness over the five freeze-thaw sequences in flexion/extension (P=0.813) and a near significant reduction in mean stiffness in axial rotation (-6%; P=0.07). However, there was a statistically significant increase in stiffness in lateral bending (+30%; P=0.007). Comparison of in vitro testing results for immature thoracic bovine spine segments between studies can be performed with up to 200 load cycles without significant changes in stiffness. However, when testing protocols require greater than 200 cycles, or when repeated freeze-thaw cycles are involved, it is important to account for the effect of cumulative load and freeze-thaw cycles on spine segment stiffness.