949 resultados para Jacobian matrices


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Manually inspecting bridges is a time-consuming and costly task. There are over 600,000 bridges in the US, and not all of them can be inspected and maintained within the specified time frame as some state DOTs cannot afford the essential costs and manpower. This paper presents a novel method that can detect bridge concrete columns from visual data for the purpose of eventually creating an automated bridge condition assessment system. The method employs SIFT feature detection and matching to find overlapping areas among images. Affine transformation matrices are then calculated to combine images containing different segments of one column into a single image. Following that, the bridge columns are detected by identifying the boundaries in the stitched image and classifying the material within each boundary. Preliminary test results using real bridge images indicate that most columns in stitched images can be correctly detected and thus, the viability of the application of this research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distributions over exchangeable matrices with infinitely many columns, such as the Indian buffet process, are useful in constructing nonparametric latent variable models. However, the distribution implied by such models over the number of features exhibited by each data point may be poorly- suited for many modeling tasks. In this paper, we propose a class of exchangeable nonparametric priors obtained by restricting the domain of existing models. Such models allow us to specify the distribution over the number of features per data point, and can achieve better performance on data sets where the number of features is not well-modeled by the original distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel technique is presented to facilitate the implementation of hierarchical b-splines and their interfacing with conventional finite element implementations. The discrete interpretation of the two-scale relation, as common in subdivision schemes, is used to establish algebraic relations between the basis functions and their coefficients on different levels of the hierarchical b-spline basis. The subdivision projection technique introduced allows us first to compute all element matrices and vectors using a fixed number of same-level basis functions. Their subsequent multiplication with subdivision matrices projects them, during the assembly stage, to the correct levels of the hierarchical b-spline basis. The proposed technique is applied to convergence studies of linear and geometrically nonlinear problems in one, two and three space dimensions. © 2012 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The absolute responses of the NPL liquid scintillation spectrometers to monoenergetic neutrons and gammas were measured at various energies in the ranges 1.2 - 17 MeV approximately for neutrons and 0.28 - 1.8 MeV for gammas. Additional measurements of the proton light output function were also carried out. Calculated responses were then obtained for the larger detector using the programs NRESP7 and PHRESP, and compared with the absolute measurements. Finally, response matrices for this detector were generated using responses calculated at closely spaced energies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fundamental problem in the analysis of structured relational data like graphs, networks, databases, and matrices is to extract a summary of the common structure underlying relations between individual entities. Relational data are typically encoded in the form of arrays; invariance to the ordering of rows and columns corresponds to exchangeable arrays. Results in probability theory due to Aldous, Hoover and Kallenberg show that exchangeable arrays can be represented in terms of a random measurable function which constitutes the natural model parameter in a Bayesian model. We obtain a flexible yet simple Bayesian nonparametric model by placing a Gaussian process prior on the parameter function. Efficient inference utilises elliptical slice sampling combined with a random sparse approximation to the Gaussian process. We demonstrate applications of the model to network data and clarify its relation to models in the literature, several of which emerge as special cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a hierarchical probabilistic model for ordinal matrix factorization. Unlike previous approaches, we model the ordinal nature of the data and take a principled approach to incorporating priors for the hidden variables. Two algorithms are presented for inference, one based on Gibbs sampling and one based on variational Bayes. Importantly, these algorithms may be implemented in the factorization of very large matrices with missing entries. The model is evaluated on a collaborative filtering task, where users have rated a collection of movies and the system is asked to predict their ratings for other movies. The Netflix data set is used for evaluation, which consists of around 100 million ratings. Using root mean-squared error (RMSE) as an evaluation metric, results show that the suggested model outperforms alternative factorization techniques. Results also show how Gibbs sampling outperforms variational Bayes on this task, despite the large number of ratings and model parameters. Matlab implementations of the proposed algorithms are available from cogsys.imm.dtu.dk/ordinalmatrixfactorization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents new methods for computing the step sizes of the subband-adaptive iterative shrinkage-thresholding algorithms proposed by Bayram & Selesnick and Vonesch & Unser. The method yields tighter wavelet-domain bounds of the system matrix, thus leading to improved convergence speeds. It is directly applicable to non-redundant wavelet bases, and we also adapt it for cases of redundant frames. It turns out that the simplest and most intuitive setting for the step sizes that ignores subband aliasing is often satisfactory in practice. We show that our methods can be used to advantage with reweighted least squares penalty functions as well as L1 penalties. We emphasize that the algorithms presented here are suitable for performing inverse filtering on very large datasets, including 3D data, since inversions are applied only to diagonal matrices and fast transforms are used to achieve all matrix-vector products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quasi-static and dynamic responses of laminated beams of equal areal mass, made from monolithic CFRP and Ultra high molecular weight Polyethylene (UHMWPE), have been measured. The end-clamped beams were impacted at mid-span by metal foam projectiles to simulate localised blast loading. The effect of clamping geometry on the response was investigated by comparing the response of beams bolted into the supports with the response of beams whose ends were wrapped around the supports. The effect of laminate shear strength upon the static and dynamic responses was investigated by testing two grades of each of the CFRP and UHMWPE beams: (i) CFRP beams with a cured matrix and uncured matrix, and (ii) UHMWPE laminates with matrices of two different shear strengths. Quasi-static stretch-bend tests indicated that the load carrying capacity of the UHWMPE beams exceeds that of the CFRP beams, increases with diminishing shear strength of matrix, and increases when the ends are wrapped rather than through-bolted. The dynamic deformation mode of the beams is qualitatively different from that observed in the quasi-static stretch-bend tests. In the dynamic case, travelling hinges emanate from the impact location and propagate towards the supports; the beams finally fail by tensile fibre fracture at the supports. The UHMWPE beams outperform the CFRP beams in terms of a lower mid-span deflection for a given impulse, and a higher failure impulse. Also, the maximum attainable impulse increases with decreasing shear strength for both the UHMWPE and CFRP beams. The ranking of the beams for load carrying capacity in the quasi-static stretch-bend tests is identical to that for failure impulse in the impact tests. Thus, the static tests can be used to gauge the relative dynamic performances of the beams. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ballistic performance of clamped circular carbon fibre reinforced polymer (CFRP) and Ultra High Molecular Weight Polyethylene (UHMWPE) fibre composite plates of equal areal mass and 0/90 lay-up were measured and compared with that of monolithic 304 stainless steel plates. The effect of matrix shear strength upon the dynamic response was explored by testing: (i) CFRP plates with both a cured and uncured matrix and (ii) UHMWPE laminates with identical fibres but with two matrices of different shear strength. The response of these plates when subjected to mid-span, normal impact by a steel ball was measured via a dynamic high speed shadow moiré technique. Travelling hinges emanate from the impact location and travel towards the supports. The anisotropic nature of the composite plate results in the hinges travelling fastest along the fibre directions and this results in square-shaped moiré fringes in the 0/90 plates. Projectile penetration of the UHMWPE and the uncured CFRP plates occurs in a progressive manner, such that the number of failed plies increases with increasing velocity. The cured CFRP plate, of high matrix shear strength, fails by cone-crack formation at low velocities, and at higher velocities by a combination of cone-crack formation and communition of plies beneath the projectile. On an equal areal mass basis, the low shear strength UHMWPE plate has the highest ballistic limit followed by the high matrix shear strength UHMWPE plate, the uncured CFRP, the steel plate and finally the cured CFRP plate. We demonstrate that the high shear strength UHMWPE plate exhibits Cunniff-type ballistic limit scaling. However, the observed Cunniff velocity is significantly lower than that estimated from the laminate properties. The data presented here reveals that the Cunniff velocity is limited in its ability to characterise the ballistic performance of fibre composite plates as this velocity is independent of the shear properties of the composites: the ballistic limit of fibre composite plates increases with decreasing matrix shear strength for both CFRP and UHMWPE plates. © 2013 Elsevier Masson SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the problem of positive observer design for positive systems defined on solid cones in Banach spaces. The design is based on the Hilbert metric and convergence properties are analyzed in the light of the Birkhoff theorem. Two main applications are discussed: positive observers for systems defined in the positive orthant, and positive observers on the cone of positive semi-definite matrices with a view on quantum systems. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the problem of low-rank distance matrix completion. This problem amounts to recover the missing entries of a distance matrix when the dimension of the data embedding space is possibly unknown but small compared to the number of considered data points. The focus is on high-dimensional problems. We recast the considered problem into an optimization problem over the set of low-rank positive semidefinite matrices and propose two efficient algorithms for low-rank distance matrix completion. In addition, we propose a strategy to determine the dimension of the embedding space. The resulting algorithms scale to high-dimensional problems and monotonically converge to a global solution of the problem. Finally, numerical experiments illustrate the good performance of the proposed algorithms on benchmarks. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we tackle the problem of learning a linear regression model whose parameter is a fixed-rank matrix. We study the Riemannian manifold geometry of the set of fixed-rank matrices and develop efficient line-search algorithms. The proposed algorithms have many applications, scale to high-dimensional problems, enjoy local convergence properties and confer a geometric basis to recent contributions on learning fixed-rank matrices. Numerical experiments on benchmarks suggest that the proposed algorithms compete with the state-of-the-art, and that manifold optimization offers a versatile framework for the design of rank-constrained machine learning algorithms. Copyright 2011 by the author(s)/owner(s).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Convergence analysis of consensus algorithms is revisited in the light of the Hilbert distance. The Lyapunov function used in the early analysis by Tsitsiklis is shown to be the Hilbert distance to consensus in log coordinates. Birkhoff theorem, which proves contraction of the Hilbert metric for any positive homogeneous monotone map, provides an early yet general convergence result for consensus algorithms. Because Birkhoff theorem holds in arbitrary cones, we extend consensus algorithms to the cone of positive definite matrices. The proposed generalization finds applications in the convergence analysis of quantum stochastic maps, which are a generalization of stochastic maps to non-commutative probability spaces. ©2010 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we adopt a differential-geometry viewpoint to tackle the problem of learning a distance online. As this problem can be cast into the estimation of a fixed-rank positive semidefinite (PSD) matrix, we develop algorithms that exploits the rich geometry structure of the set of fixed-rank PSD matrices. We propose a method which separately updates the subspace of the matrix and its projection onto that subspace. A proper weighting of the two iterations enables to continuously interpolate between the problem of learning a subspace and learning a distance when the subspace is fixed. © 2009 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several recent control applications consider the coordination of subsystems through local interaction. Often the interaction has a symmetry in state space, e.g. invariance with respect to a uniform translation of all subsystem values. The present paper shows that in presence of such symmetry, fundamental properties can be highlighted by viewing the distributed system as the discrete approximation of a partial differential equation. An important fact is that the symmetry on the state space differs from the popular spatial invariance property, which is not necessary for the present results. The relevance of the viewpoint is illustrated on two examples: (i) ill-conditioning of interaction matrices in coordination/consensus problems and (ii) the string instability issue. ©2009 IEEE.