934 resultados para Irrigation pumps.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypothesis: As the anterior and posterior semicircular canals are vital to the regulation of gaze stability, particularly during locomotion or vehicular travel, we tested whether the high velocity vestibulo‐ocular reflex (VOR) of the three ipsilesional semicircular canals elicited by the modified Head Impulse Test would correlate with subjective dizziness or vertigo scores after vestibular neuritis (VN). Background: Recovery following acute VN varies with around half reporting persistent symptoms long after the acute episode. However, an unanswered question is whether chronic symptoms are associated with impairment of the high velocity VOR of the anterior or posterior canals. Methods: Twenty patients who had experienced an acute episode of VN at least three months earlier were included in this study. Participants were assessed with the video head impulse test (vHIT) of all six canals, bithermal caloric irrigation, the Dizziness Handicap Inventory (DHI) and the Vertigo Symptoms Scale short‐form (VSS). Results: Of these 20 patients, 12 felt that they had recovered from the initial episode whereas 8 did not and reported elevated DHI and VSS scores. However, we found no correlation between DHI or VSS scores and the ipsilesional single or combined vHIT gain, vHIT gain asymmetry or caloric paresis. The high velocity VOR was not different between patients who felt they had recovered and patients who felt they had not. Conclusions: Our findings suggest that chronic symptoms of dizziness following VN are not associated with the high velocity VOR of the single or combined ipsilesional horizontal, anterior or posterior semicircular canals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Gestão da Água e da Costa, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2007

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strong water demand for irrigation, energy and drinking water production is responsible for an increasingly regulation of freshwater flow patterns and watersheds. In this context, the construction of dams allows water storage but seriously restricts freshwater flow downstream. Due to scarcity of freshwater resources, reservoir water management often promotes high hydraulic residence. This may cause strong impacts on biological components of aquatic ecosystems, influencing the development of cyanobacteria blooms and aggravating their harmful impacts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aimed to assess how potassium (K) and nitrogen (N) fertilisation may affect the use of precipitation in terms of vegetative and flowering response of 15-year-old carob trees during a 3-year experiment. A field trial was conducted in 1997, 1998 and 1999 in Algarve (Southern Portugal) in a calcareous soil. Four fertilisation treatments were tested: no fertiliser (control); 0.8 kg N/tree (N treatment); 1 kg K 2 O/tree (K treatment) and 0.8 kg N/tree plus 1 kg K 2 O/tree (NK treatment). No irrigation was applied during the experimental period. Branch length increments were measured every month throughout the growing season and inflorescence number was registered once per year. There was a strong seasonal effect on vegetative growth, since low levels of precipitation (115 mm) during October 1998–March 1999 suppressed the increment in branch length. N supplied to the trees (N and NK treatments) tended to increase water use indices in terms of vegetative growth. No response to K alone was observed in trees fertilised only with K. The number of inflorescences increased throughout the experimental period, particularly for N and NK treatments, and a reduction of the precipitation amount during April, May and June, may also enhance flowering. This knowledge could be important when making decisions concerning fertilisation under dry conditions. The results reported here indicate that tree growth (expressed as the branch growth) and flower production under dry-farming conditions, may be achieved by applying 0.8 kg of N (as ammonium nitrate) per tree during the growing season. However, N uptake and use depends on soil water availability.