937 resultados para Ionospheric weather
Resumo:
The objectives of this study were to analyze the impact of structural stand characteristics on ignition potential, surface fuel moisture, and fire behavior in Pinus sylvestris L. and Picea abies (L.) Karst stands in Finland and to explain stand-specific fire danger using the Canadian Fire Weather Index System and the Finnish Fire Risk Index. Additionally, the study analyzes the relationship between observed fire activity and fire weather indices at different stages of growing season. Field experiments were carried out in Pinus sylvestris or Picea abies dominated stands during fire seasons 2001 and 2002. Observations on ignition potential, fuel moisture, and fire behavior were analyzed in relation to stand structure and the outputs of the Finnish and Canadian fire weather indices. Seasonal patterns of fire activity were examined based on national fire statistics 1996 2003, effective temperature sum, and the fire weather indices. Point fire ignition potential was highest in Pinus clear-cuts and lowest in closed Picea stands. Moss-dominated surface fuels were driest in clear-cut and sapling stage stands and presented the highest moisture content under closed Picea canopy. Pinus sylvestris stands carried fire under a wide range of fire weather conditions under which Picea abies stands failed to sustain fire. In the national fire records, the daily number of reported ignitions presented its highest value during late fire season whereas the daily area burned peaked most substantially during early season. The fire weather indices correlated significantly with ignition potential and fuel moisture but were unable to explain fire behavior in the experimental fires. During the initial and final stages of the growing season, fire activity was disconnected from weather-based fire danger ratings. Information on stand structure and season stage would benefit the assessment of fire danger in Finnish forest landscape for fire suppression and controlled burning purposes.
Resumo:
Background The past decade has seen a rapid change in the climate system with an increased risk of extreme weather events. On and following the 3rd of January 2013, Tasmania experienced three catastrophic bushfires, which led to the evacuation of several communities, the loss of many properties, and a financial cost of approximately AUD$80 million. Objective To explore the impacts of the 2012/2013 Tasmanian bushfires on community pharmacies. Method Qualitative research methods were undertaken, employing semi-structured telephone interviews with a purposive sample of seven Tasmanian pharmacists. The interviews were recorded and transcribed, and two different methods were used to analyse the text. The first method utilised Leximancer® text analytics software to provide a birds-eye view of the conceptual structure of the text. The second method involved manual, open and axial coding, conducted independently by the two researchers for inter-rater reliability, to identify key themes in the discourse. Results Two main themes were identified - ‘people’ and ‘supply’ - from which six key concepts were derived. The six concepts were ‘patients’, ‘pharmacists’, ‘local doctor’, ‘pharmacy operations’, ‘disaster management planning’, and ‘emergency supply regulation’. Conclusion This study identified challenges faced by community pharmacists during Tasmanian bushfires. Interviewees highlighted the need for both the Tasmanian State Government and the Australian Federal Government to recognise the important primary care role that community pharmacists play during natural disasters, and therefore involve pharmacists in disaster management planning. They called for greater support and guidance for community pharmacists from regulatory and other government bodies during these events. Their comments highlighted the need for a review of Tasmania’s 3-day emergency supply regulation that allows pharmacists to provide a three-day supply of a patient’s medication without a doctor’s prescription in an emergency situation.
Resumo:
During the post-rainy (rabi) season in India around 3 million tonnes of sorghum grain is produced from 5.7 million ha of cropping. This underpins the livelihood of about 5 million households. Severe drought is common as the crop grown in these areas relies largely on soil moisture stored during the preceding rainy season. Improvement of rabi sorghum cultivars through breeding has been slow but could be accelerated if drought scenarios in the production regions were better understood. The sorghum crop model within the APSIM (Agricultural Production Systems sIMulator) platform was used to simulate crop growth and yield and the pattern of crop water status through each season using available historical weather data. The current model reproduced credibly the observed yield variation across the production region (R2=0.73). The simulated trajectories of drought stress through each crop season were clustered into five different drought stress patterns. A majority of trajectories indicated terminal drought (43%) with various timings of onset during the crop cycle. The most severe droughts (25% of seasons) were when stress began before flowering and resulted in failure of grain production in most cases, although biomass production was not affected so severely. The frequencies of drought stress types were analyzed for selected locations throughout the rabi tract and showed different zones had different predominating stress patterns. This knowledge can help better focus the search for adaptive traits and management practices to specific stress situations and thus accelerate improvement of rabi sorghum via targeted specific adaptation. The case study presented here is applicable to other sorghum growing environments. © 2012 Elsevier B.V.
Resumo:
Wheat crops in southeast Queensland (Qld) and northern New South Wales (NSW) were infected with fusarium head blight (FHB)-like symptoms during the 201011 wheat growing season. Wheat crops in this region were surveyed at soft dough or early maturity stage to determine the distribution, severity, aetiology and toxigenicity of FHB. FHB was widespread on bread wheat and durum, and Fusarium graminearum and/or F.pseudograminearum were diagnosed from 42 of the 44 sites using species-specific PCR primers directly on spikelets or from monoconidial cultures obtained from spikelets. Stem base browning due to crown rot (CR) was also evident in some samples from both states. The overall FHB and CR severity was higher for NSW than Qld. Deoxynivalenol (DON) concentration of immature grains was more than 1 mg kg-1 in samples from 11 Qld and 14 NSW sites, but only 13 of 498 mature grain samples sourced from the affected areas had more than 1 mg kg-1 DON. DON concentration in straw also exceeded 1 mg kg-1 in eight Qld and all but one NSW sites but this was not linked to DON concentration of immature grains. The proportion of spikelets with positive diagnosis for F.graminearum and/or F.pseudograminearum and weather-related factors influenced DON levels in immature grains. The average monthly rainfall for AugustNovember during crop anthesis and maturation exceeded the long-term monthly average by 10150%. Weather played a critical role in FHB epidemics for Qld sites but this was not apparent for the NSW sites, as weather was generally favourable at all sites.
Resumo:
Field evaluation of germplasm for performance under water and heat stress is challenging. Field environments are variable and unpredictable, and genotype x environment interactions are difficult to interpret if environments are not well characterised. Numerous traits, genes and quantitative trait loci have been proposed for improving performance but few have been used in variety development. This reflects the limited capacity of commercial breeding companies to screen for these traits and the absence of validation in field environments relevant to breeding companies, and because little is known about the economic benefit of selecting one particular trait over another. The value of the proposed traits or genes is commonly not demonstrated in genetic backgrounds of value to breeding companies. To overcome this disconnection between physiological trait breeding and uptake by breeding companies, three field sites representing the main environment types encountered across the Australian wheatbelt were selected to form a set of managed environment facilities (MEFs). Each MEF manages soil moisture stress through irrigation, and the effects of heat stress through variable sowing dates. Field trials are monitored continuously for weather variables and changes in soil water and canopy temperature in selected probe genotypes, which aids in decisions guiding irrigation scheduling and sampling times. Protocols have been standardised for an essential core set of measurements so that phenotyping yield and other traits are consistent across sites and seasons. MEFs enable assessment of a large number of traits across multiple genetic backgrounds in relevant environments, determine relative trait value, and facilitate delivery of promising germplasm and high value traits into commercial breeding programs.
Resumo:
Introduction: Extreme heat events (both heat waves and extremely hot days) are increasing in frequency and duration globally and cause more deaths in Australia than any other extreme weather event. Numerous studies have demonstrated a link between extreme heat events and an increased risk of morbidity and death. In this study, the researchers sought to identify if extreme heat events in the Tasmanian population were associated with any changes in emergency department admissions to the Royal Hobart Hospital (RHH) for the period 2003-2010. Methods: Non-identifiable RHH emergency department data and climate data from the Australian Bureau of Meteorology were obtained for the period 2003-2010. Statistical analyses were conducted using the computer statistical computer software ‘R’ with a distributed lag non-linear model (DLNM) package used to fit a quassi-Poisson generalised linear regression model. Results: This study showed that RR of admission to RHH during 2003-2010 was significant over temperatures of 24 C with a lag effect lasting 12 days and main effect noted one day after the extreme heat event. Discussion: This study demonstrated that extreme heat events have a significant impact on public hospital admissions. Two limitations were identified: admissions data rather than presentations data were used and further analysis could be done to compare types of admissions and presentations between heat and non-heat events. Conclusion: With the impacts of climate change already being felt in Australia, public health organisations in Tasmania and the rest of Australia need to implement adaptation strategies to enhance resilience to protect the public from the adverse health effects of heat events and climate change.
Resumo:
Approximately 130,000 ha of hardwood plantations have been established in north-eastern Australia in the last 15 years. As a result of poor taxa selection approximately 25,000 ha have failed due to drought, pest and disease or extreme weather events (drought and cyclones). Given the predicted impacts of climate change in north-eastern Australia (reduced rainfall, increased temperatures and an increase in extreme weather conditions, particularly drought, storms and cyclones), selection of the right taxa for plantation development is even more critical as the taxon planted needs to be able to perform well under the environments experienced at planting as well as those that may develop over in 30 years time as a result of changing climate.