992 resultados para Inverse Algorithm
Resumo:
The problem of inverse diffraction from plane to plane is considered in the case where a finite aperture exists in the boundary plane. Singular values and singular functions for the problem are introduced, and the number of degrees of freedom is defined in terms of the distribution of the singular values. Numerical computations are presented for the one-dimensional problem, and it is shown that the effect of evanescent waves disappears at a distance of approximately one wavelength from the boundary plane, even when the dimension of the slit is comparable with the wavelength of the diffracted field. © 1983 Taylor & Francis Group, LLC.
Resumo:
info:eu-repo/semantics/published
Resumo:
Fredholm integral equations of the first kind are the mathematical model common to several electromagnetic, optical and acoustical inverse scattering problems. In most of these problems the solution must be positive in order to satisfy physical plausibility. We consider ill-posed deconvolution problems and investigate several linear regularization algorithms which provide positive approximate solutions at least in the absence of errors on the data.
Resumo:
info:eu-repo/semantics/published
Resumo:
For pt.I. see ibid. vol.1, p.301 (1985). In the first part of this work a general definition of an inverse problem with discrete data has been given and an analysis in terms of singular systems has been performed. The problem of the numerical stability of the solution, which in that paper was only briefly discussed, is the main topic of this second part. When the condition number of the problem is too large, a small error on the data can produce an extremely large error on the generalised solution, which therefore has no physical meaning. The authors review most of the methods which have been developed for overcoming this difficulty, including numerical filtering, Tikhonov regularisation, iterative methods, the Backus-Gilbert method and so on. Regularisation methods for the stable approximation of generalised solutions obtained through minimisation of suitable seminorms (C-generalised solutions), such as the method of Phillips (1962), are also considered.
Resumo:
info:eu-repo/semantics/published
Resumo:
Inverse diffraction consists in determining the field distribution on a boundary surface from the knowledge of the distribution on a surface situated within the domain where the wave propagates. This problem is a good example for illustrating the use of least-squares methods (also called regularization methods) for solving linear ill-posed inverse problem. We focus on obtaining error bounds For regularized solutions and show that the stability of the restored field far from the boundary surface is quite satisfactory: the error is proportional to ∊(ðŗ‚ ≃ 1) ,ðŗœ being the error in the data (Hölder continuity). However, the error in the restored field on the boundary surface is only proportional to an inverse power of │In∊│ (logarithmic continuity). Such a poor continuity implies some limitations on the resolution which is achievable in practice. In this case, the resolution limit is seen to be about half of the wavelength. Copyright © 1981 by The Institute of Electrical and Electronics Engineers, Inc.
Resumo:
info:eu-repo/semantics/published
Resumo:
In fluid mechanics, it is well accepted that the Euler equation is one of the reduced forms of the Navier-Stokes equation by truncating the viscous effect. There are other truncation techniques currently being used in order to truncate the Navier-Stokes equation to a reduced form. This paper describes one such technique, suitable for adaptive domain decomposition methods for the solution of viscous flow problems. The physical domain of a viscous flow problem is partitioned into viscous and inviscid subdomains without overlapping regions, and the technique is embedded into a finite volume method. Some numerical results are provided for a flat plate and the NACA0012 aerofoil. Issues related to distributed computing are discussed.
Resumo:
This paper considers the problem of sequencing n jobs in a two‐machine re‐entrant shopwith the objective of minimizing the maximum completion time. The shop consists of twomachines, M1 and M2 , and each job has the processing route (M1 , M2 , M1 ). An O(n log n)time heuristic is presented which generates a schedule with length at most 4/3 times that ofan optimal schedule, thereby improving the best previously available worst‐case performanceratio of 3/2.
Resumo:
This paper considers the problem of minimizing the schedule length of a two-machine shop in which not only can a job be assigned any of the two possible routes, but also the processing times depend on the chosen route. This problem is known to be NP-hard. We describe a simple approximation algorithm that guarantees a worst-case performance ratio of 2. We also present some modifications to this algorithm that improve its performance and guarantee a worst-case performance ratio of 3=2.
Resumo:
The paper considers the three‐machine open shop scheduling problem to minimize themakespan. It is assumed that each job consists of at most two operations, one of which is tobe processed on the bottleneck machine, the same for all jobs. A new lower bound on theoptimal makespan is derived, and a linear‐time algorithm for finding an optimalnon‐preemptive schedule is presented.
Resumo:
This paper presents a genetic algorithm for finding a constrained minimum spanning tree. The problem is of relevance in the design of minimum cost communication networks, where there is a need to connect all the terminals at a user site to a terminal concentrator in a multipoint (tree) configuration, while ensuring that link capacity constraints are not violated. The approach used maintains a distinction between genotype and phenotype, which produces superior results to those found using a direct representation in a previous study.