935 resultados para Interplanetary mission
Resumo:
Evidence-based practice as it applies to the Library and Information (LIS) sector and in particular teacher librarians is the focus of this research investigation. The context for this research is Australian school libraries and teacher librarians. This is a research in progress and the report here will include some very early findings and lessons learned from the initial pilot study. The contributions of this research will be in developing a framework for the library and information sector with a particular application for teacher librarians. Providing meaningful evidence of work practices that demonstrate contributions to the schools goals and mission statements in conjunction with contributions to student academic, social and cultural achievements are crucial for the future of the teacher librarian.
Resumo:
Social enterprises are diverse in their mission, business structures and industry orientations. Like all businesses, social enterprises face a range of strategic and operational challenges and utilize a range of strategies to access resources in support of their venture. This exploratory study examined the strategic management issues faced by Australian social enterprises and the ways in which they respond to these. The research was based on a comprehensive literature review and semi-structured interviews with 11 representatives of eight social enterprises based in Victoria and Queensland. The sample included mature social enterprises and those within two years of start-up. In addition to the research report, the outputs of the project include a series of six short documentaries, which are available on YouTube at http://www.youtube.com/user/SocialEnterpriseQUT#p/u. The research reported on here suggests that social enterprises are sophisticated in utilizing processes of network bricolage (Baker et al. 2003) to mobilize resources in support of their goals. Access to network resources can be both enabling and constraining as social enterprises mature. In terms of the use of formal business planning strategies, all participating social enterprises had utilized these either at the outset or the point of maturation of their business operations. These planning activities were used to support internal operations, to provide a mechanism for managing collective entrepreneurship, and to communicate to external stakeholders about the legitimacy and performance of the social enterprises. Further research is required to assess the impacts of such planning activities, and the ways in which they are used over time. Business structures and governance arrangements varied amongst participating enterprises according to: mission and values; capital needs; and the experiences and culture of founding organizations and individuals. In different ways, participants indicated that business structures and governance arrangements are important ways of conferring legitimacy on social enterprise, by signifying responsible business practice and strong social purpose to both external and internal stakeholders. Almost all participants in the study described ongoing tensions in balancing social purpose and business objectives. It is not clear, however, whether these tensions were problematic (in the sense of eroding mission or business opportunities) or productive (in the sense of strengthening mission and business practices through iterative processes of reflection and action). Longitudinal research on the ways in which social enterprises negotiate mission fulfillment and business sustainability would enhance our knowledge in this area. Finally, despite growing emphasis on measuring social impact amongst institutions, including governments and philanthropy, that influence the operating environment of social enterprise, relatively little priority was placed on this activity. The participants in our study noted the complexities of effectively measuring social impact, as well as the operational difficulties of undertaking such measurement within the day to day realities of running small to medium businesses. It is clear that impact measurement remains a vexed issue for a number of our respondents. This study suggests that both the value and practicality of social impact measurement require further debate and critically informed evidence, if impact measurement is to benefit social enterprises and the communities they serve.
Resumo:
With rising environmental alarm, the reduction of critical aircraft emissions including carbon dioxides (CO2) and nitrogen oxides (NOx) is one of most important aeronautical problems. There can be many possible attempts to solve such problem by designing new wing/aircraft shape, new efficient engine, etc. The paper rather provides a set of acceptable flight plans as a first step besides replacing current aircrafts. The paper investigates a green aircraft design optimisation in terms of aircraft range, mission fuel weight (CO2) and NOx using advanced Evolutionary Algorithms coupled to flight optimisation system software. Two multi-objective design optimisations are conducted to find the best set of flight plans for current aircrafts considering discretised altitude and Mach numbers without designing aircraft shape and engine types. The objectives of first optimisation are to maximise range of aircraft while minimising NOx with constant mission fuel weight. The second optimisation considers minimisation of mission fuel weight and NOx with fixed aircraft range. Numerical results show that the method is able to capture a set of useful trade-offs that reduce NOx and CO2 (minimum mission fuel weight).
Resumo:
Ocean processes are dynamic and complex events that occur on multiple different spatial and temporal scales. To obtain a synoptic view of such events, ocean scientists focus on the collection of long-term time series data sets. Generally, these time series measurements are continually provided in real or near-real time by fixed sensors, e.g., buoys and moorings. In recent years, an increase in the utilization of mobile sensor platforms, e.g., Autonomous Underwater Vehicles, has been seen to enable dynamic acquisition of time series data sets. However, these mobile assets are not utilized to their full capabilities, generally only performing repeated transects or user-defined patrolling loops. Here, we provide an extension to repeated patrolling of a designated area. Our algorithms provide the ability to adapt a standard mission to increase information gain in areas of greater scientific interest. By implementing a velocity control optimization along the predefined path, we are able to increase or decrease spatiotemporal sampling resolution to satisfy the sampling requirements necessary to properly resolve an oceanic phenomenon. We present a path planning algorithm that defines a sampling path, which is optimized for repeatability. This is followed by the derivation of a velocity controller that defines how the vehicle traverses the given path. The application of these tools is motivated by an ongoing research effort to understand the oceanic region off the coast of Los Angeles, California. The computed paths are implemented with the computed velocities onto autonomous vehicles for data collection during sea trials. Results from this data collection are presented and compared for analysis of the proposed technique.
Resumo:
Data collection using Autonomous Underwater Vehicles (AUVs) is increasing in importance within the oceano- graphic research community. Contrary to traditional moored or static platforms, mobile sensors require intelligent planning strategies to manoeuvre through the ocean. However, the ability to navigate to high-value locations and collect data with specific scientific merit is worth the planning efforts. In this study, we examine the use of ocean model predictions to determine the locations to be visited by an AUV, and aid in planning the trajectory that the vehicle executes during the sampling mission. The objectives are: a) to provide near-real time, in situ measurements to a large-scale ocean model to increase the skill of future predictions, and b) to utilize ocean model predictions as a component in an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. We present an algorithm designed to generate paths for AUVs to track a dynamically evolving ocean feature utilizing ocean model predictions. This builds on previous work in this area by incorporating the predicted current velocities into the path planning to assist in solving the 3-D motion planning problem of steering an AUV between two selected locations. We present simulation results for tracking a fresh water plume by use of our algorithm. Additionally, we present experimental results from field trials that test the skill of the model used as well as the incorporation of the model predictions into an AUV trajectory planner. These results indicate a modest, but measurable, improvement in surfacing error when the model predictions are incorporated into the planner.