960 resultados para Inter-procedural analysis
Resumo:
The purpose of this study was to investigate the relationship between self-awareness, emotional distress, motivation, and outcome in adults with severe traumatic brain injury. A sample of 55 patients were selected from 120 consecutive patients with severe traumatic brain injury admitted to the rehabilitation unit of a large metropolitan public hospital. Subjects received multidisciplinary inpatient rehabilitation and different types of outpatient rehabilitation and community-based services according to availability and need, Measures used in the cluster analysis were the Patient Competency Rating Scale, Self-Awareness of Deficits Interview, Head Injury Behavior Scale, Change Assessment Questionnaire, the Beck Depression Inventory, and Beck Anxiety Inventory; outcome measures were the Disability Rating Scale, Community Integration Questionnaire, and Sickness Impact Profile. A three-cluster solution was selected, with groups labeled as high self-awareness (n = 23), low self-awareness (n = 23), and good recovery (n = 8). The high self-awareness cluster had significantly higher levels of self-awareness, motivation, and emotional distress than the low self-awareness cluster but did not differ significantly in outcome. Self-awareness after brain injury is associated with greater motivation to change behavior and higher levels of depression and anxiety; however, it was not clear that this heightened motivation actually led to any improvement in outcome. Rehabilitation timing and approach may need to be tailored to match the individual's level of self-awareness, motivation, and emotional distress.
Resumo:
Modulated chlorophyll fluorescence techniques were used to examine the effects of cyanide (NaCN) from cyanide fishing on photosynthesis of the symbiotic algae (zooxanthellae) located within the tissues of the zooxanthellate hard coral Plesiastrea versipora. Incubating corals for 3 h in a cyanide concentration of >10(-5) M NaCN under a saturating light intensity (photosynthetically active radiation [PAR] intensity of 250 mu mol quanta m(-2) s(-1)) caused a long-term decrease in the ratio of variable to maximal fluorescence (dark-adapted F-v/F-m). The effect of cyanide on dark-adapted F-v/F-m was Light dependent; thus F-v/F-m only decreased in corals exposed to 10(-4) M NaCN for 3 h under PAR of 250 mu mol quanta m(-2) s(-1). In corals where dark-adapted F-v/F-m was significantly lowered by cyanide exposure, we observed significant loss of zooxanthellae from the tissues. causing the corals to discolour (bleach). To further examine the light-dependent effect of cyanide and its relation to loss of zooxanthellae, corals were exposed to 10-4 M NaCN or seawater only (control), either in darkness or under 250 mu mol quanta m(-2) s(-1). ill significant decrease in dark-adapted F-v/F-m and loss of zooxanthellae only occurred in corals exposed to cyanide in the light. These results suggest cyanide causes the dissociation of the symbiosis (bleaching) by affecting photosynthesis of the zooxanthellae. Quenching analysis using the saturation-pulse technique revealed the development of high levels of non-photochemical quenching in cyanide-exposed coral. This result is consistent with the known property of cyanide as an inhibitor of the dark reactions of the Calvin cycle, specifically as an inhibitor of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Therefore, chronic photoinhibition and an impairment of photosynthesis of zooxanthellae provides an important 'signal' to examine the environmental effects of cyanide fishing during controlled releases in situ.
Resumo:
Spending by aid agencies on emergencies has quadrupled over the last decade, to over US$ 6 billion. To date, cost-effectiveness has seldom been considered in the prioritization and evaluation of emergency interventions. The sheer volume of resources spent on humanitarian aid and the chronicity of many humanitarian interventions call for more attention to be paid to the issue of 'value for money'. In this paper we present data from a major humanitarian crisis, an epidemic of visceral leishmaniasis (VL) in war-torn Sudan. The special circumstances provided us, in retrospect, with unusually accurate data on excess mortality, costs of the intervention and its effects, thus allowing us to express cost-effectiveness as the cost per Disability Adjusted Life Year (DALY) averted. The cost-effectiveness ratio, of US$ 18.40 per DALY (uncertainty range between US$ 13.53 and US$ 27.63), places the treatment of VL in Sudan among health interventions considered 'very flood value for money' (interventions of less than US$ 25 per DALY). We discuss the usefulness of this analysis to the internal management of the VL programme, the procurement of funds for the programme, and more generally, to priority setting in humanitarian relief interventions. We feel that in evaluations of emergency interventions attempts could be made more often to perform cost-effectiveness analyses, including the use of DALYs, provided that the outcomes of these analyses are seen in the broad context of the emergency situation and its consequences on the affected population. This paper provides a first contribution to what is hoped to become an international database of cost-effectiveness studies of health outcome such as the DALY.
Resumo:
We use theoretical and numerical methods to investigate the general pore-fluid flow patterns near geological lenses in hydrodynamic and hydrothermal systems respectively. Analytical solutions have been rigorously derived for the pore-fluid velocity, stream function and excess pore-fluid pressure near a circular lens in a hydrodynamic system. These analytical solutions provide not only a better understanding of the physics behind the problem, but also a valuable benchmark solution for validating any numerical method. Since a geological lens is surrounded by a medium of large extent in nature and the finite element method is efficient at modelling only media of finite size, the determination of the size of the computational domain of a finite element model, which is often overlooked by numerical analysts, is very important in order to ensure both the efficiency of the method and the accuracy of the numerical solution obtained. To highlight this issue, we use the derived analytical solutions to deduce a rigorous mathematical formula for designing the computational domain size of a finite element model. The proposed mathematical formula has indicated that, no matter how fine the mesh or how high the order of elements, the desired accuracy of a finite element solution for pore-fluid flow near a geological lens cannot be achieved unless the size of the finite element model is determined appropriately. Once the finite element computational model has been appropriately designed and validated in a hydrodynamic system, it is used to examine general pore-fluid flow patterns near geological lenses in hydrothermal systems. Some interesting conclusions on the behaviour of geological lenses in hydrodynamic and hydrothermal systems have been reached through the analytical and numerical analyses carried out in this paper.
Resumo:
Pulse-amplitude-modulation fluorometry and oxygen respirometry were used to investigate diel photosynthetic responses by symbiotic dinoflagellates to light levels in summer and winter on a high latitude coral reef. The symbiotic dinoflagellates from 2 species of reef-building coral (Porites cylindrica and Stylophora pistillata) showed photoinhibitory decreases in the ratio of variable (F-v) to maximal (F-m) fluorescence (F-v/F-m) as early as 09:00 h on both summer and winter days on the reefs associated with One Tree Island (23 degrees 30' S, 152 degrees 06' E; Great Barrier Reef, Australia). This was due to decreases in maximum, F-m, and to a smaller extent minimum, F-0, chlorophyll fluorescence. Complete recovery took 4 to 6 h and began to occur as soon as light levels fell each day. Chlorophyll fluorescence quenching analysis of corals measured during the early afternoon revealed classic regulation of photosystem II (PSII) efficiency through non-photochemical quenching (NPQ). These results appear to be similar to data collected for other algae and higher plants, suggesting involvement of the xanthophyll cycle of symbiotic dinoflagellates in regulating the quantum efficiency of PSII. The ability of symbiotic dinoflagellates to develop significant NPQ, however, depended strongly on when the symbiotic dinoflagellates were studied. Whereas symbiotic dinoflagellates from corals in the early afternoon showed a significant capacity to regulate the efficiency of PSII using NPQ, those sampled before sunrise had a slower and much reduced capacity, suggesting that elements of the xanthophyll cycle are suppressed prior to sunrise. A second major finding of this study is that the quantum efficiency of PSII in symbiotic dinoflagellates is strongly diurnal, and is as much as 50% lower just prior to sunrise than later in the day. When combined with oxygen flux data, these results indicate that a greater portion of the electron transport occurring later in the day is likely to be due to the increases in the rate of carbon fixation by Rubisco or to higher flutes through the Mehler-Ascorbate-Peroxidase (MAP) cycle.
Resumo:
Training-needs analysis is critical for defining and procuring effective training systems. However, traditional approaches to training-needs analysis are not suitable for capturing the demands of highly automated and computerized work domains. In this article, we propose that work domain analysis can identify the functional structure of a work domain that must be captured in a training system, so that workers can be trained to deal with unpredictable contingencies that cannot be handled by computer systems. To illustrate this argument, we outline a work domain analysis of a fighter aircraft that defines its functional structure in terms of its training objectives, measures of performance, basic training functions, physical functionality, and physical context. The functional structure or training needs identified by work domain analysis can then be used as a basis for developing functional specifications for training systems, specifically its design objectives, data collection capabilities, scenario generation capabilities, physical functionality, and physical attributes. Finally, work domain analysis also provides a useful framework for evaluating whether a tendered solution fulfills the training needs of a work domain.
Resumo:
Sulfonation is an important metabolic process involved in the excretion and in some cases activation of various endogenous compounds and xenobiotics. This reaction is catalyzed by a family of enzymes named sulfotransferases. The cytosolic human sulfotransferases SULT1A1 and SULT1A3 have overlapping yet distinct substrate specificities. SULT1A1 favors simple phenolic substrates such as p-nitrophenol, whereas SULT1A3 prefers monoamine substrates such as dopamine. In this study we have used a variety of phenolic substrates to functionally characterize the role of the amino acid at position 146 in SULT1A1 and SULT1A3. First, the mutation A146E in SULT1A1 yielded a SULT1A3-like protein with respect to the Michaelis constant for simple phenols. The mutation E146A in SULT1A3 resulted in a SULT1A1-like protein with respect to the Michaelis constant for both simple phenols and monoamine compounds. When comparing the specificity of SULT1A3 toward tyramine with that for p-ethylphenol (which differs from tyramine in having no amine group on the carbon side chain), we saw a 200-fold preference for tyramine. The kinetic data obtained with the E146A mutant of SULT1A3 for these two substrates clearly showed that this protein preferred substrates without an amine group attached. Second, changing the glutamic acid at position 146 of SULT1A3 to a glutamine, thereby neutralizing the negative charge at this position, resulted in a 360-fold decrease in the specificity constant for dopamine. The results provide strong evidence that residue 146 is crucial in determining the substrate specificity of both SULT1A1 and SULT1A3 and suggest that there is a direct interaction between glutamic acid 146 in SULT1A3 and monoamine substrates.
Resumo:
We examine a stylized version of EPA auctions when agents know the list of values of sellers and buyers. There are inefficient equilibria where no goods are traded and efficient equilibria where all exchange occurs at a uniform price. We also provide examples under incomplete information when the uniform price equilibrium holds and when it does not hold. (C) 1999 Elsevier Science S.A. All rights reserved. JEL classification: D44; Q29.
Resumo:
Poly(3-hydroxybutyrate) (PHB) production by fermentation was examined under both restricted- and ample-oxygen supply conditions in a single fed-batch fermentation. Recombinant Escherichia coli transformed with the PHB production plasmid pSYL107 was grown to reach high cell density (227 g/l dry cell weight) with a high PHB content (78% of dry cell weight), using a glucose-based minimal medium. A simple flux model containing 12 fluxes was developed and applied to the fermentation data. A superior closure (95%) of the carbon mass balance was achieved. When the data were put into use, the results demonstrated a surprisingly large excretion of formate and lactate. Even though periods of severe oxygen limitation coincided with rapid acetate and lactate excretion, PHB productivity and carbon utilization efficiency were not significantly impaired. These results are very positive in reducing oxygen demand in an industrial PHA fermentation without sacrificing its PHA productivity, thereby reducing overall production costs.
Resumo:
The bis(mu-hydroxo) complex [Cu-2(Me-2[9]aneN(2)S)(2)(OH)(2)](PF6)(2) (Me-2[9]aneN(2)S = N,N'-dimethyl-1-thia-4,7-diazacyclononane) results after reaction of [Cu(Me-2[9]aneN(2)S)(MeCN)] (PF6) with dioxygen at -78 degrees C in acetonitrile. The complex has been characterized by X-ray crystallography: orthorhombic, space group Pnma, with a 18.710(3), b 16.758(2), c 9.593(2) Angstrom, and Z = 4. The structure refined to a final R value of 0.051. The complex contains two copper(II) ions bridged by two hydroxo groups with Cu ... Cu 2.866(1) Angstrom. The solid-state magnetic susceptibility study reveals ferromagnetic coupling, the fitting parameters being J = +46+/-5 cm(-1), g = 2.01+/-0.01 and theta = -0.58+/-0.03 K. The frozen-solution e.p.r. spectrum in dimethyl sulfoxide is characteristic of a monomeric copper(II) ion (g(parallel to) 2.300, g(perpendicular to) 2.063; A(parallel to) 156.2 x 10(-4) cm(-1), A(perpendicular to) 9.0 x 10(-4) cm(-1)) with an N2O2 donor set. Thioether coordination to the copper(II) in solution is supported by the presence of an intense absorption assigned to a sigma(S)-->Cu-II LMCT transition at c. 34000 cm(-1). The single-crystal spectrum of [Cu-2(Me-2[9]aneN(2)S)(2)(OH)(2)] (PF6)(2) (273 K) reveals d-->d transitions at 14500 and 18300 cm(-1) and a weak pi(S)-->Cu-II charge-transfer band at approximately 25000 cm(-1).
Resumo:
Bioelectrical impedance analysis has found extensive application as a simple noninvasive method for the assessment of body fluid volumes, The measured impedance is, however, not only related to the volume of fluid but also to its inherent resistivity. The primary determinant of the resistivities of body fluids is the concentration of ions. The aim of this study was to investigate the sensitivity of bioelectrical impedance analysis to bodily ion status. Whole body impedance over a range of frequencies (4-1012 kHz) of rats was measured during infusion of various concentrations of saline into rats concomitant with measurement of total body and intracellular water by tracer dilution techniques. Extracellular resistance (R-o), intracellular resistance (R-i) and impedance at the characteristic frequency (Z(c)) were calculated. R-o and Z(c) were used to predict extracellular and total body water respectively using previously published formulae. The results showed that whilst R-o and Z(c) decreased proportionately to the amount of NaCl infused, R-i increased only slightly. Impedances at the end of infusion predicted increases iu TBW and ECW of approximately 4-6% despite a volume increase of less than 0.5% in TBW due to the volume of fluid infused. These data are discussed in relation to the assumption of constant resistivity in the prediction of fluid volumes from impedance data.
Resumo:
This paper studies life-cycle preferences over consumption and health status. We show that cost-effectiveness analysis is consistent with cost-benefit analysis if the Lifetime utility function is additive over time, multiplicative in the utility of consumption and the utility of health status, and if the utility of consumption is constant over time. We derive the conditions under which the lifetime utility function takes this form, both under expected utility theory and under rank-dependent utility theory, which is currently the most important nonexpected utility theory. If cost-effectiveness analysis is consistent with cost-benefit analysis, it is possible to derive tractable expressions for the willingness to pay for quality-adjusted life-years (QALYs). The willingness to pay for QALYs depends on wealth, remaining life expectancy, health status, and the possibilities for intertemporal substitution of consumption. (C) 1999 Elsevier Science B.V. All rights reserved.