997 resultados para Integrated luminosity
Resumo:
Grain protein composition determines quality traits, such as value for food, feedstock, and biomaterials uses. The major storage proteins in sorghum are the prolamins, known as kafirins. Located primarily on the periphery of the protein bodies surrounding starch, cysteine-rich beta- and gamma-kafirins may limit enzymatic access to internally positioned alpha-kafirins and starch. An integrated approach was used to characterize sorghum with allelic variation at the kafirin loci to determine the effects of this genetic diversity on protein expression. Reversed-phase high performance liquid chromatography and lab-on-a-chip analysis showed reductions in alcohol-soluble protein in beta-kafirin null lines. Gel-based separation and liquid chromatography-tandem mass spectrometry identified a range of redox active proteins affecting storage protein biochemistry. Thioredoxin, involved in the processing of proteins at germination, has reported impacts on grain digestibility and was differentially expressed across genotypes. Thus, redox states of endosperm proteins, of which kafirins are a subset, could affect quality traits in addition to the expression of proteins.
Resumo:
Transfer from aluminum to copper metallization and decreasing feature size of integrated circuit devices generated a need for new diffusion barrier process. Copper metallization comprised entirely new process flow with new materials such as low-k insulators and etch stoppers, which made the diffusion barrier integration demanding. Atomic Layer Deposition technique was seen as one of the most promising techniques to deposit copper diffusion barrier for future devices. Atomic Layer Deposition technique was utilized to deposit titanium nitride, tungsten nitride, and tungsten nitride carbide diffusion barriers. Titanium nitride was deposited with a conventional process, and also with new in situ reduction process where titanium metal was used as a reducing agent. Tungsten nitride was deposited with a well-known process from tungsten hexafluoride and ammonia, but tungsten nitride carbide as a new material required a new process chemistry. In addition to material properties, the process integration for the copper metallization was studied making compatibility experiments on different surface materials. Based on these studies, titanium nitride and tungsten nitride processes were found to be incompatible with copper metal. However, tungsten nitride carbide film was compatible with copper and exhibited the most promising properties to be integrated for the copper metallization scheme. The process scale-up on 300 mm wafer comprised extensive film uniformity studies, which improved understanding of non-uniformity sources of the ALD growth and the process-specific requirements for the ALD reactor design. Based on these studies, it was discovered that the TiN process from titanium tetrachloride and ammonia required the reactor design of perpendicular flow for successful scale-up. The copper metallization scheme also includes process steps of the copper oxide reduction prior to the barrier deposition and the copper seed deposition prior to the copper metal deposition. Easy and simple copper oxide reduction process was developed, where the substrate was exposed gaseous reducing agent under vacuum and at elevated temperature. Because the reduction was observed efficient enough to reduce thick copper oxide film, the process was considered also as an alternative method to make the copper seed film via copper oxide reduction.
Resumo:
Weed management is the major challenge to the success of dry-seeded rice (DSR). A field study was conducted during the dry seasons of 2013 and 2014at the International Rice Research Institute to evaluate the performance of herbicides combined with mechanical weeding in DSR. The lowest weed density and biomass were found in the treatment oxadiazon followed by (fb) fenoxaprop+ethoxysulfuron fb 2,4-D fb mechanical weeding (MW) at 42 days after sowing (DAS). However, this treatment had similar weed density and biomass to the treatments oxadiazon fb bispyribac-sodium fb fenoxaprop+ethoxysulfuron fb 2,4-D,oxadiazon fb bispyribac-sodium fb 2,4-D, and oxadiazon fb MW (28 DAS) fb MW (42 DAS). The highest weed density and biomass were recorded in the treatment oxadiazon fb MW (28 DAS) and oxadiazon fb 2,4-D. Higher grain yield (5.3-5.8tha-1) was produced in the plots that received oxadiazon fb fenoxaprop+ethoxysulfuron fb 2,4-D fb MW(42 DAS) and oxadiazon fb bispyribac-sodium fb fenoxaprop+ethoxysulfuron fb 2,4-D. The results of this study provide sustainable weed management options to farmers growing DSR.
Resumo:
Summary We have determined the full-length 14,491-nucleotide genome sequence of a new plant rhabdovirus, alfalfa dwarf virus (ADV). Seven open reading frames (ORFs) were identified in the antigenomic orientation of the negative-sense, single-stranded viral RNA, in the order 3′-N-P-P3-M-G-P6-L-5′. The ORFs are separated by conserved intergenic regions and the genome coding region is flanked by complementary 3′ leader and 5′ trailer sequences. Phylogenetic analysis of the nucleoprotein amino acid sequence indicated that this alfalfa-infecting rhabdovirus is related to viruses in the genus Cytorhabdovirus. When transiently expressed as GFP fusions in Nicotiana benthamiana leaves, most ADV proteins accumulated in the cell periphery, but unexpectedly P protein was localized exclusively in the nucleus. ADV P protein was shown to have a homotypic, and heterotypic nuclear interactions with N, P3 and M proteins by bimolecular fluorescence complementation. ADV appears unique in that it combines properties of both cytoplasmic and nuclear plant rhabdoviruses.
Resumo:
Breaches of biosecurity, leading to incursions by invasive species, have the potential to cause substantial economic, social and environmental losses, including drastic reduction in biodiversity. It is argued that improving biosecurity reduces risk to biodiversity, while maintaining stable ecosystems through biodiversity can be a safeguard against biosecurity breaches. The global costs of invasive alien species (IAS) have been estimated at around US$350 billion, while alien invertebrate and vertebrate pests and weeds are estimated to cost Australia at least $7 billion a year. A striking, current, example is the incursion by Myrtle Rust (Puccinia psidii) an organism which can infect all members of the Myrtaceae, the most important family in the Australian flora. Myrtle rust was first detected on a property on the central coast of New South Wales in late April 2010. Two years later the disease has been detected in numerous locations in Queensland and New South Wales ranging from commercial plant nurseries and public amenities to large areas of bushland. This particular breach of biosecurity will, inevitably, diminish biodiversity of flora and fauna over large areas of the continent. Integrated pest management (IPM), an enrichment of diversity in managing invasive and other pest species, offers the best opportunity to address problems such as these. Australia's response to increasing biosecurity risk is comprehensive and includes national networking of scientists engaged in a complex program of biosecurity research and development, including studies of IPM. This network is being enhanced by the development of international linkages.
Resumo:
Public rental housing (PRH) projects are the mainstream of China's new affordable housing policies, and their integrated sustainability has a far-reaching effect on medium-low income families' well-being and social stability. However, there are few quantitative researches on the integrated sustainability of PRH projects. Our study tries to fill this gap through proposing an assessment model of the integrated sustainability for PRH projects. First, this paper defines what the sustainability of a PRH project is. Second, after constructing the sustainable system of a PRH project from the perspective of complex eco-system, the paper explores the internal operation mechanism and the coupling mechanism among the ecological, economic and social subsystems. Third, it identifies fourteen indices to represent the sustainability system of a PRH project, including six indices of ecological subsystem, five of economic subsystem and three of social subsystem. Fourth, it qualifies the weights of three subsystems and their internal representative indices. In addition, an assessment model is established through expert surveys and analytic network process (ANP). Finally, the paper carries out an empirical research on a PRH project in Nanjing city of China, followed by suggestions to enhance the integrated sustainability. The sustainability system and its evaluation model proposed in this paper are concise and easy to understand and can provide a theoretical foundation and a scientific basis for the evaluation and optimization of PRH projects.
Resumo:
An important limitation of the existing IGC algorithms, is that they do not explicitly exploit the inherent time scale separation that exist in aerospace vehicles between rotational and translational motions and hence can be ineffective. To address this issue, a two-loop partial integrated guidance and control (PIGC) scheme has been proposed in this paper. In this design, the outer loop uses a recently developed, computationally efficient, optimal control formulation named as model predictive static programming. It gives the commanded pitch and yaw rates whereas necessary roll-rate command is generated from a roll-stabilization loop. The inner loop tracks the outer loop commands using the Dynamic inversion philosophy. Uncommonly, Six-Degree of freedom (Six-DOF) model is used directly in both the loops. This intelligent manipulation preserves the inherent time scale separation property between the translational and rotational dynamics, and hence overcomes the deficiency of current IGC designs, while preserving its benefits. Comparative studies of PIGC with one loop IGC and conventional three loop design were carried out for engaging incoming high speed target. Simulation studies demonstrate the usefulness of this method.
Resumo:
During the course of preparation of a master plan for the transportation networks in Bangalore city, mapping the various initiatives and interventions planned towards addressing mobility, existing situation and implications of some of the proposed interventions was analysed. The inferences are based on existing transportation network; synthesis of various transportation related studies and proposed infrastructure initiatives (road works) in Bangalore. Broadly, they can be summarized as following five aspects: I. Need for ~Sreclassifying~T existing road networks (arterial and sub-arterial) with effective geospatial database in the back-end. II. The proposed Core Ring Road at surface grade may not be feasible. III. Current interventions encouraging more independent motorable transport by way of road widening, construction of underpasses, flyovers and grade-separators would not ease traffic congestion when addressed in isolation. IV. Factors affecting time and cost-overruns in infrastructure projects and ways to tackle are discussed. V. Initiatives required for addressing effective planning for operations recommended.
Resumo:
A new 8-node serendipity quadrilateral plate bending element (MQP8) based on the Mindlin-Reissner theory for the analysis of thin and moderately thick plate bending problems using Integrated Force Method is presented in this paper. The performance of this new element (MQP8) is studied for accuracy and convergence by analyzing many standard benchmark plate bending problems. This new element MQP8 performs excellent in both thin and moderately thick plate bending situations. And also this element is free from spurious/zero energy modes and free from shear locking problem.
Resumo:
The influence of electric field and temperature on power consumption of piezoelectric actuated integrated structure is studied by using a single degree of freedom mass-spring-damper system model coupled with a piezoactuator. The material lead zirconate titanate, is considered as it is capable of producing relatively high strains (e.g., 3000 mu epsilon). Actuators are often subject to high electric fields to increase the induced strain produced, resulting in field dependant piezoelectric coefficient d(31), dielectric coefficient epsilon(33) and dissipation factor delta. Piezostructures are also likely to be used across a wide range of temperatures in aerospace and undersea operations. Again, the piezoelectric properties can vary with temperature. Recent experimental studies by physics researchers have looked at the effect of high electric field and temperature on piezoelectric properties. These properties are used together with an impedance based power consumption model. Results show that including the nonlinear variation of dielectric permittivity and dissipation factor with electric field is important. Temperature dependence of the dielectric constant also should be considered.
Resumo:
This paper presents a flexible and integrated planning tool for active distribution network to maximise the benefits of having high level s of renewables, customer engagement, and new technology implementations. The tool has two main processing parts: “optimisation” and “forecast”. The “optimization” part is an automated and integrated planning framework to optimize the net present value (NPV) of investment strategy for electric distribution network augmentation over large areas and long planning horizons (e.g. 5 to 20 years) based on a modified particle swarm optimization (MPSO). The “forecast” is a flexible agent-based framework to produce load duration curves (LDCs) of load forecasts for different levels of customer engagement, energy storage controls, and electric vehicles (EVs). In addition, “forecast” connects the existing databases of utility to the proposed tool as well as outputs the load profiles and network plan in Google Earth. This integrated tool enables different divisions within a utility to analyze their programs and options in a single platform using comprehensive information.