957 resultados para Insulin-Like Growth Factor II


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bovine papillomavirus E5 protein is a 44-aa transmembrane protein that forms a stable complex with the cellular platelet-derived growth factor (PDGF) β receptor and induces constitutive tyrosine phosphorylation and activation of the receptor, resulting in cell transformation. The E5 protein does not resemble PDGF, but rather activates the receptor in a ligand-independent fashion, thus providing a unique system to examine activation of receptor tyrosine kinases. Here, we used a variety of approaches to explore the mechanism of receptor activation by the E5 protein. Chemical cross-linking experiments revealed that the E5 protein activated only a small fraction of the endogenous PDGF β receptor in transformed fibroblasts and suggested that this fraction was constitutively dimerized. Coimmunoprecipitation experiments using extracts of cells engineered to coexpress full-length and truncated PDGF β receptors confirmed that the E5 protein induced oligomerization of the receptor. Furthermore, in cells expressing the E5 protein, a kinase-active receptor was able to trans-phosphorylate a kinase-negative mutant receptor but was unable to catalyze intramolecular autophosphorylation. These results indicated that the E5 protein induced PDGF β receptor activation by forming a stable complex with the receptor, resulting in receptor dimerization and trans-phosphorylation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) plays a key role in physiological blood vessel formation and pathological angiogenesis such as tumor growth and ischemic diseases. Hypoxia is a potent inducer of VEGF in vitro. Here we demonstrate that VEGF is induced in vivo by exposing mice to systemic hypoxia. VEGF induction was highest in brain, but also occurred in kidney, testis, lung, heart, and liver. In situ hybridization analysis revealed that a distinct subset of cells within a given organ, such as glial cells and neurons in brain, tubular cells in kidney, and Sertoli cells in testis, responded to the hypoxic stimulus with an increase in VEGF expression. Surprisingly, however, other cells at sites of constitutive VEGF expression in normal adult tissues, such as epithelial cells in the choroid plexus and kidney glomeruli, decreased VEGF expression in response to the hypoxic stimulus. Furthermore, in addition to VEGF itself, expression of VEGF receptor-1 (VEGFR-1), but not VEGFR-2, was induced by hypoxia in endothelial cells of lung, heart, brain, kidney, and liver. VEGF itself was never found to be up-regulated in endothelial cells under hypoxic conditions, consistent with its paracrine action during normoxia. Our results show that the response to hypoxia in vivo is differentially regulated at the level of specific cell types or layers in certain organs. In these tissues, up- or down-regulation of VEGF and VEGFR-1 during hypoxia may influence their oxygenation after angiogenesis or modulate vascular permeability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF), also known as vascular permeability factor, is a cytokine of central importance for the angiogenesis associated with cancers and other pathologies. Because angiogenesis often involves endothelial cell (EC) migration and proliferation within a collagen-rich extracellular matrix, we investigated the possibility that VEGF promotes neovascularization through regulation of collagen receptor expression. VEGF induced a 5- to 7-fold increase in dermal microvascular EC surface protein expression of two collagen receptors—the α1β1 and α2β1 integrins—through induction of mRNAs encoding the α1 and α2 subunits. In contrast, VEGF did not induce increased expression of the α3β1 integrin, which also has been implicated in collagen binding. Integrin α1-blocking and α2-blocking antibodies (Ab) each partially inhibited attachment of microvascular EC to collagen I, and α1-blocking Ab also inhibited attachment to collagen IV and laminin-1. Induction of α1β1 and α2β1 expression by VEGF promoted cell spreading on collagen I gels which was abolished by a combination of α1-blocking and α2-blocking Abs. In vivo, a combination of α1-blocking and α2-blocking Abs markedly inhibited VEGF-driven angiogenesis; average cross-sectional area of individual new blood vessels was reduced 90% and average total new vascular area was reduced 82% without detectable effects on the pre-existing vasculature. These data indicate that induction of α1β1 and α2β1 expression by EC is an important mechanism by which VEGF promotes angiogenesis and that α1β1 and α2β1 antagonists may prove effective in inhibiting VEGF-driven angiogenesis in cancers and other important pathologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of a peptide hormone to affect many different intracellular targets is thought to be possible because of the modular organization of signal transducing molecules in the cell. Evidence for the presence of signaling modules in metazoan cells, however, is incomplete. Herein we show, with morphology and cell fractionation, that all the components of a mitogen-activated protein kinase pathway are concentrated in caveolae of unstimulated human fibroblasts. Addition of platelet-derived growth factor to either the intact cell or caveolae isolated from these cells stimulates tyrosine phosphorylation and activates mitogen-activated protein kinases in caveolae. The molecular machinery for kinase activation, therefore, is preorganized at the cell surface of quiescent cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In urodele amphibians, lens induction during development and regeneration occurs through different pathways. During development, the lens is induced from the mutual interaction of the ectoderm and the optic vesicle, whereas after lentectomy the lens is regenerated through the transdifferentiation of the iris-pigmented epithelial cells. Given the known role of fibroblast growth factors (FGFs) during lens development, we examined whether or not the expression and the effects of exogenous FGF during urodele lens regeneration were conserved. In this paper, we describe expression of FGF-1 and its receptors, FGFR-2 (KGFR and bek variants) and FGFR-3, in newts during lens regeneration. Expression of these genes was readily observed in the dedifferentiating pigmented epithelial cells, and the levels of expression were high in the lens epithelium and the differentiating fibers and lower in the retina. These patterns of expression implied involvement of FGFs in lens regeneration. To further elucidate this function, we examined the effects of exogenous FGF-1 and FGF-4 during lens regeneration. FGF-1 or FGF-4 treatment in lentectomized eyes resulted in the induction of abnormalities reminiscent to the ones induced during lens development in transgenic mice. Effects included transformation of epithelial cells to fiber cells, double lens regeneration, and lenses with abnormal polarity. These results establish that FGF molecules are key factors in fiber differentiation, polarity, and morphogenesis of the lens during regeneration even though the regenerating lens is induced by a different mechanism than in lens development. In this sense, FGF function in lens regeneration and development should be regarded as conserved. Such conservation should help elucidate the mechanisms of lens regeneration in urodeles and its absence in higher vertebrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations of the VHL tumor suppressor gene occur in patients with VHL disease and in the majority of sporadic clear cell renal carcinomas (VHL−/− RCC). Loss of VHL protein function is associated with constitutive expression of mRNAs encoding hypoxia-inducible proteins, such as vascular endothelial growth factor. Overproduction of angiogenic factors might explain why VHL−/− RCC tumors are so highly vascularized, but whether this overproduction is sufficient for oncogenesis still remains unknown. In this report, we examined the activity of transforming growth factor-α (TGF-α), another VHL-regulated growth factor. We show that TGF-α mRNA and protein are hypoxia-inducible in VHL−/− RCC cells expressing reintroduced VHL. In addition to its overexpression by VHL−/− RCC cells, TGF-α can also act as a specific growth-stimulatory factor for VHL−/− RCC cells expressing reintroduced wild-type VHL, as well as primary renal proximal tubule epithelial cells, the likely site of origin of RCC. This role is in contrast to those of other growth factors overexpressed by VHL−/− RCC cells, such as vascular endothelial growth factor and TGF-β1, which do not stimulate RCC cell proliferation. A TGF-α-specific antisense oligodeoxynucleotide blocked TGF-α production in VHL−/− RCC cells, which led to the dependence of those cells on exogenous growth factors to sustain growth in culture. Growth of VHL−/− RCC cells was also significantly reduced by a drug that specifically inhibits the epidermal growth factor receptor, the receptor through which TGF-α stimulates proliferation. These results suggest that the generation of a TGF-α autocrine loop as a consequence of VHL inactivation in renal proximal tubule epithelial cells may provide the uncontrolled growth stimulus necessary for the initiation of tumorigenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Platelet-derived growth factor (PDGF) is a broadly expressed mitogenic and chemotactic factor with diverse roles in a number of physiologic and pathologic settings. The zinc finger transcription factors Sp1, Sp3 and Egr-1 bind to overlapping elements in the proximal PDGF B-chain promoter and activate transcription of this gene. The anthracycline nogalamycin has previously been reported to inhibit the capacity of Egr-1 to bind DNA in vitro. Here we used electrophoretic mobility shift assays to show that nogalamycin added to cells in culture did not alter the interaction of Egr-1 with the PDGF-B promoter. Instead, it enhanced the capacity of Sp1 to bind DNA. Nogalamycin increased PDGF-B mRNA expression at the level of transcription, which was abrogated by mutation of the Sp1 binding site in the PDGF-B promoter or overexpression of mutant Sp1. Rather than increasing total levels of Sp1, nogalamycin altered the phosphorylation state of the transcription factor. Overexpression of dominant-negative PKC-ζ blocked nogalamycin-inducible Sp1 phosphorylation and PDGF-B promoter-dependent expression. Nogalamycin stimulated the phosphorylation of PKC-ζ (on residue Thr410). These findings demonstrate for the first time that PKC-ζ and Sp1 phosphorylation mediate the inducible expression of this growth factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Similarities in the phenotypes of mice deficient for cytotoxic T lymphocyte antigen-4 (CTLA-4) or transforming growth factor-β1 (TGF-β1) and other observations have led to speculation that CTLA-4 mediates its inhibitory effect on T cell activation via costimulation of TGF-β production. Here, we examine the role of TGF-β in CTLA-4-mediated inhibition of T cell activation and of CTLA-4 in the regulation of TGF-β production. Activation of AND TCR transgenic mouse T cells with costimulatory receptor-specific antigen presenting cells results in efficient costimulation of proliferation by CD28 ligation and inhibition by CTLA-4 ligation. Neutralizing antibody to TGF-β does not reverse CTLA-4-mediated inhibition. Also, CTLA-4 ligation equally inhibits proliferation of wild-type, TGF-β1−/−, and Smad3−/− T cells. Further, CTLA-4 engagement does not result in the increased production of either latent or active TGF-β by CD4+ T cells. These results indicate that CTLA-4 ligation does not regulate TGF-β production and that CTLA-4-mediated inhibition can occur independently of TGF-β. Collectively, these data demonstrate that CTLA-4 and TGF-β represent distinct mechanisms for regulation of T cell responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide (NO) plays a critical role in vascular endothelial growth factor (VEGF)-induced angiogenesis and vascular hyperpermeability. However, the relative contribution of different NO synthase (NOS) isoforms to these processes is not known. Here, we evaluated the relative contributions of endothelial and inducible NOS (eNOS and iNOS, respectively) to angiogenesis and permeability of VEGF-induced angiogenic vessels. The contribution of eNOS was assessed by using an eNOS-deficient mouse, and iNOS contribution was assessed by using a selective inhibitor [l-N6-(1-iminoethyl) lysine, l-NIL] and an iNOS-deficient mouse. Angiogenesis was induced by VEGF in type I collagen gels placed in the mouse cranial window. Angiogenesis, vessel diameter, blood flow rate, and vascular permeability were proportional to NO levels measured with microelectrodes: Wild-type (WT) ≥ WT with l-NIL or iNOS−/− > eNOS−/− ≥ eNOS−/− with l-NIL. The role of NOS in VEGF-induced acute vascular permeability increase in quiescent vessels also was determined by using eNOS- and iNOS-deficient mice. VEGF superfusion significantly increased permeability in both WT and iNOS−/− mice but not in eNOS−/− mice. These findings suggest that eNOS plays a predominant role in VEGF-induced angiogenesis and vascular permeability. Thus, selective modulation of eNOS activity is a promising strategy for altering angiogenesis and vascular permeability in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidermal growth factor (EGF) stimulates the homodimerization of EGF receptor (EGFR) and the heterodimerization of EGFR and ErbB2. The EGFR homodimers are quickly endocytosed after EGF stimulation as a means of down-regulation. However, the results from experiments on the ability of ErbB2 to undergo ligand-induced endocytosis are very controversial. It is unclear how the EGFR–ErbB2 heterodimers might behave. In this research, we showed by subcellular fractionation, immunoprecipitation, Western blotting, indirect immunofluorescence, and microinjection that, in the four breast cancer cell lines MDA453, SKBR3, BT474, and BT20, the EGFR–ErbB2 heterodimerization levels were positively correlated with the ratio of ErbB2/EGFR expression levels. ErbB2 was not endocytosed in response to EGF stimulation. Moreover, in MDA453, SKBR3, and BT474 cells, which have very high levels of EGFR–ErbB2 heterodimerization, EGF-induced EGFR endocytosis was greatly inhibited compared with that in BT20 cells, which have a very low level of EGFR–ErbB2 heterodimerization. Microinjection of an ErbB2 expression plasmid into BT20 cells significantly inhibited EGF-stimulated EGFR endocytosis. Coexpression of ErbB2 with EGFR in 293T cells also significantly inhibited EGF-stimulated EGFR endocytosis. EGF did not stimulate the endocytosis of ectopically expressed ErbB2 in BT20 and 293T cells. These results indicate that ErbB2 and the EGFR–ErbB2 heterodimers are impaired in EGF-induced endocytosis. Moreover, when expressed in BT20 cells by microinjection, a chimeric receptor composed of the ErbB2 extracellular domain and the EGFR intracellular domain underwent normal endocytosis in response to EGF, and this chimera did not block EGF-induced EGFR endocytosis. Thus, the endocytosis deficiency of ErbB2 is due to the sequence of its intracellular domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor-β1 (TGF-β) can be tumor suppressive, but it can also enhance tumor progression by stimulating the complex process of epithelial-to-mesenchymal transdifferentiaion (EMT). The signaling pathway(s) that regulate EMT in response to TGF-β are not well understood. We demonstrate the acquisition of a fibroblastoid morphology, increased N-cadherin expression, loss of junctional E-cadherin localization, and increased cellular motility as markers for TGF-β–induced EMT. The expression of a dominant-negative Smad3 or the expression of Smad7 to levels that block growth inhibition and transcriptional responses to TGF-β do not inhibit mesenchymal differentiation of mammary epithelial cells. In contrast, we show that TGF-β rapidly activates RhoA in epithelial cells, and that blocking RhoA or its downstream target p160ROCK, by the expression of dominant-negative mutants, inhibited TGF-β–mediated EMT. The data suggest that TGF-β rapidly activates RhoA-dependent signaling pathways to induce stress fiber formation and mesenchymal characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although transforming growth factor-β (TGF-β) has been identified to mainly inhibit cell growth, the correlation of elevated TGF-β with increasing serum prostate-specific antigen (PSA) levels in metastatic stages of prostate cancer has also been well documented. The molecular mechanism for these two contrasting effects of TGF-β, however, remains unclear. Here we report that Smad3, a downstream mediator of the TGF-β signaling pathway, functions as a coregulator to enhance androgen receptor (AR)-mediated transactivation. Compared with the wild-type AR, Smad3 acts as a strong coregulator in the presence of 1 nM 5α-dihydrotestosterone, 10 nM 17β-estradiol, or 1 μM hydroxyflutamide for the LNCaP mutant AR (mtAR T877A), found in many prostate tumor patients. We further showed that endogenous PSA expression in LNCaP cells can be induced by 5α-dihydrotestosterone, and the addition of the Smad3 further induces PSA expression. Together, our findings establish Smad3 as an important coregulator for the androgen-signaling pathway and provide a possible explanation for the positive role of TGF-β in androgen-promoted prostate cancer growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell shape plays a role in cell growth, differentiation, and death. Herein, we used the hepatocyte, a normal, highly differentiated cell characterized by a long G1 phase, to understand the mechanisms that link cell shape to growth. First, evidence was provided that the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) cascade is a key transduction pathway controlling the hepatocyte morphology. MEK2/ERK2 activation in early G1 phase did not lead to cell proliferation but induced cell shape spreading and demonstration was provided that this MAPK-dependent spreading was required for reaching G1/S transition and DNA replication. Moreover, epidermal growth factor (EGF) was found to control this morphogenic signal in addition to its mitogenic effect. Thus, blockade of cell spreading by cytochalasin D or PD98059 treatment resulted in inhibition of EGF-dependent DNA replication. Our data led us to assess the first third of G1, is exclusively devoted to the growth factor-dependent morphogenic events, whereas the mitogenic signal occured at only approximately mid-G1 phase. Moreover, these two growth factor-related sequential signaling events involved successively activation of MEK2-ERK2 and then MEK1/2-ERK1/2 isoforms. In addition, we demonstrated that inhibition of extracellular matrix receptor, such as integrin β1 subunit, leads to cell arrest in G1, whereas EGF was found to up-regulated integrin β1 and fibronectin in a MEK-ERK–dependent manner. This process in relation to cytoskeletal reorganization could induce hepatocyte spreading, making them permissive for DNA replication. Our results provide new insight into the mechanisms by which a growth factor can temporally control dual morphogenic and mitogenic signals during the G1 phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterized by endocrine tumors of parathyroids, pancreatic islets, and anterior pituitary. The MEN1 gene encodes a nuclear protein called menin. In MEN1 carriers inactivating mutations give rise to a truncated product consistent with menin acting as a tumor suppressor gene. However, the role of menin in tumorigenesis and its physiological functions are not known. Here, we show that menin inactivation by antisense RNA antagonizes transforming growth factor type β-mediated cell growth inhibition. Menin interacts with Smad3, and antisense menin suppresses transforming growth factor type β-induced and Smad3-induced transcriptional activity by inhibiting Smad3/4-DNA binding at specific transcriptional regulatory sites. These results implicate a mechanism of tumorigenesis by menin inactivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In postnatal tissues, angiogenesis occurs in nontumoral conditions on appropriate stimuli. In the nervous tissue, hypoxia, neural graft, increased neural function, and synaptic activity are associated with neoangiogenesis. We have investigated the occurrence of neoangiogenesis in the superior cervical ganglia (scg) of newborn rats treated for 8–21 days with 6-hydroxy-dopamine (6-OHDA), nerve growth factor (NGF), or 6-OHDA + NGF. The two latter treatments induced a significant increase in scg size. However, the increase after combined treatment far exceeded that of NGF alone. Similarly, histological and histochemical analysis revealed neuronal hypertrophy and endothelial cell hyperplasia associated with stromal hypertrophy (as described by laminin immunostaining) and increased vascular bed (as revealed by platelet/endothelial cell adhesion molecule-1 immunostaining) in 6-OHDA + NGF-treated pups. NGF, either alone or associated with 6-OHDA, also induced a significant up-regulation of NADPH diaphorase, neuronal nitric oxide synthase, and vascular endothelial growth factor expression in scg neurons. The present investigation suggests that the increase of scg size induced by NGF and 6-OHDA + NGF is associated with neoangiogenesis, and that the induction of vasoactive and angiogenic factors in neurons represents a further and previously undisclosed effect of NGF.