966 resultados para Insensitive Mutants
Resumo:
Septins are an evolutionarily conserved group of GTP-binding and filament-forming proteins that belong to the large superclass of P-loop GTPases. While originally discovered in yeast as cell division cycle mutants with cytokinesis defects, they are now known to have diverse cellular roles which include polarity determination, cytoskeletal reorganization, membrane dynamics, vesicle trafficking, and exocytosis. Septin proteins form homo- and hetero-oligomeric polymers which can assemble into higher-order filaments. They are also known to interact with components of the cytoskeleton, ie actin and tubulin. The precise role of GTP binding is not clear but a current model suggests that it is associated with conformational changes which alter binding to other proteins. There are at least 12 human septin genes, and although information on expression patterns is limited, most undergo complex alternative splicing with some degree of tissue specificity. Nevertheless, an increasing body of data implicates the septin family in the pathogenesis of diverse disease states including neoplasia, neurodegenerative conditions, and infections. Here the known biochemical properties of mammalian septins are reviewed in the light of the data from yeast and other model organisms. The data implicating septins in human disease are considered and a model linking these data is proposed. It is posited that septins can act as regulatable scaffolds where the stoichiometry of septin associations, modifications, GTP status, and the interactions with other proteins allow the regulation of key cellular processes including polarity determination. Derangements of such septin scaffolds thus explain the role of septins in disease states. Copyright © 2004 Pathological Society of Great Britain and Ireland.
Resumo:
Genome-scale metabolic models promise important insights into cell function. However, the definition of pathways and functional network modules within these models, and in the biochemical literature in general, is often based on intuitive reasoning. Although mathematical methods have been proposed to identify modules, which are defined as groups of reactions with correlated fluxes, there is a need for experimental verification. We show here that multivariate statistical analysis of the NMR-derived intra- and extracellular metabolite profiles of single-gene deletion mutants in specific metabolic pathways in the yeast Saccharomyces cerevisiae identified outliers whose profiles were markedly different from those of the other mutants in their respective pathways. Application of flux coupling analysis to a metabolic model of this yeast showed that the deleted gene in an outlying mutant encoded an enzyme that was not part of the same functional network module as the other enzymes in the pathway. We suggest that metabolomic methods such as this, which do not require any knowledge of how a gene deletion might perturb the metabolic network, provide an empirical method for validating and ultimately refining the predicted network structure.
Resumo:
Cancer cells are insensitive to many signals that inhibit growth of untransformed cells. Here, we show that primary human epithelial cells expressing human papillomavirus (HPV) type-16 E6/E7 bypass arrest caused by the DNA-damaging drug adriamycin and become tetraploid. To determine the contribution of E6 in the context of E7 to the resistance of arrest and induction of tetraploidy, we used an E6 mutant unable to degrade p53 or RNAi targeting p53 for knockdown. The E6 mutant fails to generate tetraploidy; however, the presence of E7 is sufficient to bypass arrest while the p53 RNAi permits both arrest insensitivity and tetraploidy. We published previously that polo-like kinase 1 (Plk1) is upregulated in E6/E7-expressing cells. We observe here that abnormal expression of Plk1 protein correlates with tetraploidy. Using the p53 binding-defective mutant of E6 and p53 RNAi, we show that p53 represses Plk1, suggesting that loss of p53 results in tetraploidy through upregulation of Plk1. Consistent with this hypothesis, overexpression of Plk1 in cells generates tetraploidy but does not confer resistance to arrest. These results support a model for transformation caused by HPV-16 where bypass of arrest and tetraploidy are separable consequences of p53 loss with Plk1 required only for the latter effect.
Resumo:
Protein TrwC is the conjugative relaxase responsible for DNA processing in plasmid R388 bacterial conjugation. TrwC has two catalytic tyrosines, Y18 and Y26, both able to carry out cleavage reactions using unmodified oligonucleotide substrates. Suicide substrates containing a 30-Sphosphorothiolate linkage at the cleavage site displaced TrwC reaction towards covalent adducts and thereby enabled intermediate steps in relaxase reactions to be investigated. Two distinct covalent TrwC–oligonucleotide complexes could be separated from noncovalently bound protein by SDS–PAGE. As observed by mass spectrometry, one complex contained a single, cleaved oligonucleotide bound to Y18, whereas the other contained two cleaved oligonucleotides, bound to Y18 and Y26. Analysis of the cleavage reaction using suicide substrates and Y18F or Y26F mutants showed that efficient Y26 cleavage only occurs after Y18 cleavage. Strand-transfer reactions carried out with the isolated Y18–DNA complex allowed the assignment of specific roles to each tyrosine. Thus, only Y18 was used for initiation. Y26 was specifically used in the second transesterification that leads to strand transfer, thus catalyzing the termination reaction that occurs in the recipient cell.
Resumo:
Nidoviruses (Coronaviridae, Arteriviridae, and Roniviridae) encode a nonstructural protein, called nsp10 in arteriviruses and nsp13 in coronaviruses, that is comprised of a C-terminal superfamily 1 helicase domain and an N-terminal, putative zinc-binding domain (ZBD). Previously, mutations in the equine arteritis virus (EAV) nsp10 ZBD were shown to block arterivirus reproduction by disrupting RNA synthesis and possibly virion biogenesis. Here, we characterized the ATPase and helicase activities of bacterially expressed mutant forms of nsp10 and its human coronavirus 229E ortholog, nsp13, and correlated these in vitro activities with specific virus phenotypes. Replacement of conserved Cys or His residues with Ala proved to be more deleterious than Cys-for-His or His-for-Cys replacements. Furthermore, denaturation-renaturation experiments revealed that, during protein refolding, Zn2+ is essential for the rescue of the enzymatic activities of nidovirus helicases. Taken together, the data strongly support the zinc-binding function of the N-terminal domain of nidovirus helicases. nsp10 ATPase/helicase deficiency resulting from single-residue substitutions in the ZBD or deletion of the entire domain could not be complemented in trans by wild-type ZBD, suggesting a critical function of the ZBD in cis. Consistently, no viral RNA synthesis was detected after transfection of EAV full-length RNAs encoding ATPase/helicase-deficient nsp10 into susceptible cells. In contrast, diverse phenotypes were observed for mutants with enzymatically active nsp10, which in a number of cases correlated with the activities measured in vitro. Collectively, our data suggest that the ZBD is critically involved in nidovirus replication and transcription by modulating the enzymatic activities of the helicase domain and other, yet unknown, mechanisms.
Resumo:
Formation of the coronavirus replication-transcription complex involves the synthesis of large polyprotein precursors that are extensively processed by virus-encoded cysteine proteases. In this study, the coding sequence of the feline infectious peritonitis virus (FIPV) main protease, 3CL(pro), was determined. Comparative sequence analyses revealed that FIPV 3CL(pro) and other coronavirus main proteases are related most closely to the 3C-like proteases of potyviruses. The predicted active centre of the coronavirus enzymes has accepted unique replacements that were probed by extensive mutational analysis. The wild-type FIPV 3CL(pro) domain and 25 mutants were expressed in Escherichia coli and tested for proteolytic activity in a peptide-based assay. The data strongly suggest that, first, the FIPV 3CL(pro) catalytic system employs His(41) and Cys(144) as the principal catalytic residues. Second, the amino acids Tyr(160) and His(162), which are part of the conserved sequence signature Tyr(160)-Met(161)-His(162) and are believed to be involved in substrate recognition, were found to be indispensable for proteolytic activity. Third, replacements of Gly(83) and Asn(64), which were candidates to occupy the position spatially equivalent to that of the catalytic Asp residue of chymotrypsin-like proteases, resulted in proteolytically active proteins. Surprisingly, some of the Asn(64) mutants even exhibited strongly increased activities. Similar results were obtained for human coronavirus (HCoV) 3CL(pro) mutants in which the equivalent Asn residue (HCoV 3CL(pro) Asn(64)) was substituted. These data lead us to conclude that both the catalytic systems and substrate-binding pockets of coronavirus main proteases differ from those of other RNA virus 3C and 3C-like proteases.
Resumo:
The impact of the alternative sigma factor sigma B (SigB) on pathogenesis of Staphylococcus aureus is not conclusively clarified. In this study, a central venous catheter (CVC) related model of multiorgan infection was used to investigate the role of SigB for the pathogenesis of S. aureus infections and biofilm formation in vivo. Analysis of two SigB-positive wild-type strains and their isogenic mutants revealed uniformly that the wild-type was significantly more virulent than the SigB-deficient mutant. The observed difference in virulence was apparently not linked to the capability of the strains to form biofilms in vivo since wild-type and mutant strains were able to produce biofilm layers inside of the catheter. The data strongly indicate that the alternative sigma factor SigB plays a role in CVC-associated infections caused by S. aureus.
Resumo:
This paper deals with Takagi-Sugeno (TS) fuzzy model identification of nonlinear systems using fuzzy clustering. In particular, an extended fuzzy Gustafson-Kessel (EGK) clustering algorithm, using robust competitive agglomeration (RCA), is developed for automatically constructing a TS fuzzy model from system input-output data. The EGK algorithm can automatically determine the 'optimal' number of clusters from the training data set. It is shown that the EGK approach is relatively insensitive to initialization and is less susceptible to local minima, a benefit derived from its agglomerate property. This issue is often overlooked in the current literature on nonlinear identification using conventional fuzzy clustering. Furthermore, the robust statistical concepts underlying the EGK algorithm help to alleviate the difficulty of cluster identification in the construction of a TS fuzzy model from noisy training data. A new hybrid identification strategy is then formulated, which combines the EGK algorithm with a locally weighted, least-squares method for the estimation of local sub-model parameters. The efficacy of this new approach is demonstrated through function approximation examples and also by application to the identification of an automatic voltage regulation (AVR) loop for a simulated 3 kVA laboratory micro-machine system.
Resumo:
Neuropeptide F is the most abundant neuropeptide in parasitic flatworms and is analogous to vertebrate neuropeptide Y. This paper examines the effects of neuropeptide F on tetrathyridia of the cestode Mesocestoides vogae and provides preliminary data on the signalling mechanisms employed. Neuropeptide F ( greater than or equal to 10 muM) had profound excitatory effects on larval motility in vitro. The effects were insensitive to high concentrations (I mM) of the anaesthetic procame hydrochloride suggesting extraneuronal sites of action. Neuropeptide F activity was not significantly blocked by a FMRFamide-related peptide analog (GNFFRdFamide) that was found to inhibit GNFFRFamide-induced excitation indicating the occurrence of distinct neuropeptide F and FMRFamide-related peptide receptors. Larval treatment with guanosine 5'-O-(2-thiodiphosphate) trilithium salt prior to the addition of neuropeptide F completely abolished the excitatory effects indicating the involvement of G-proteins and a G-protein coupled receptor in neuropeptide F activity. Addition of guanosine 5'-O-(2-thiodiphosphate) following neuropeptide F had limited inhibitory effects consistent with the activation of a signalling cascade by the neuropeptide. With respect to Ca2+ involvement in neuropeptide F-induced excitation of M. vogae larvae, the L-type Ca2+-channel blockers verapamil and nifedipine both abolished neuropeptide F activity as did high Mg+ concentrations and drugs which blocked sarcoplasmic reticulum Ca2+-activated Ca2+-channels (ryanodine) and sarcoplasmic reticulum Ca2+ pumps (cyclopiazonic acid). Therefore, both extracellular and intracellular Ca2+ is important for neuropeptide F excitation in M. vogae. With resepct to second messengers, the protein kinase C inhibitor chelerythrine chloride and the adenylate cyclase inhibitor MDL-2330A both abolished neuropeptide F-induced excitation. The involvement of a signalling pathway that involves protein kinase C was further supported by the fact that phorbol-12-myristate-13-acetate,known to directly activate protein kinase C, had direct excitatory effects on larval motility. Although neuropeptide F is structurally analogous to neuropeptide Y, its mode-of-action in flatworms appears quite distinct from the common signalling mechanism seen in vertebrates. (C) 2003 on behalf of Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A polymerase chain reaction (PCR) based method was developed for the specific and sensitive diagnosis of the microsporidian parasite Nosema bombi in bumble bees (Bombus spp.). Four primer pairs, amplifying ribosomal RNA (rRNA) gene fragments, were tested on N. bombi and the related microsporidia Nosema apis and Nosema ceranae, both of which infect honey bees. Only primer pair Nbombi-SSU-Jf1/Jr1 could distinguish N. bombi (323 bp amplicon) from these other bee parasites. Primer pairs Nbombi-SSU-Jf1/Jr1 and ITS-f2/r2 were then tested for their sensitivity with N. bombi spore concentrations from 107 down to 10 spores diluted in 100 mu l of either (i) water or (ii) host bumble bee homogenate to simulate natural N. bombi infection (equivalent to the DNA from 10(6) spores down to 1 spore per PCR). Though the N. bombi-specific primer pair Nbombi-SSU-Jf1/Jr1 was relatively insensitive, as few as 10 spores per extract (equivalent to 1 spore per PCR) were detectable using the N. bombi-non-specific primer pair ITS-f2/r2, which amplifies a short fragment of similar to 120 bp. Testing 99 bumble bees for N. bombi infection by light microscopy versus PCR diagnosis with the highly sensitive primer pair ITS-f2/r2 showed the latter to b more accurate. PCR diagnosis of N. bombi using a combination of two primer pairs (Nbombi-SSU-Jf1/Jr1 and ITS-f2/r2) provides increased specificity, sensitivity, and detection of all developmental stages compared with light microscopy. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Transition metal catalyzed bond formation is a fundamental process in catalysis and is of general interest throughout chemistry. To date, however, the knowledge of association reactions is rather limited, relative to what is known about dissociative processes. For example, surprisingly little is known about how the bond-forming ability of a metal, in general, varies across the Periodic Table. In particular, the effect of reactant valency on such trends is poorly understood. Herein, the authors examine these key issues by using density functional theory calculations to study CO and CN formations over the 4d metals. The calculations reveal that the chemistries differ in a fundamental way. In the case of CO formation, the reaction enthalpies span a much greater range than those of CN formation. Moreover, CO formation is found to be kinetically sensitive to the metal; here the reaction barriers (E-a) are found to be influenced by the reaction enthalpy. CN formation, conversely, is found to be relatively kinetically insensitive to the metal, and there is no correlation found between the reaction barriers and the reaction enthalpy. Analysis has shown that at the final adsorbed state, the interaction between N and the surface is relatively greater than that of O. Furthermore, in comparison with O, relatively less bonding between the surface and N is observed to be lost during transition state formation. These greater interactions between N and the surface, which can be related to the larger valency of N, are found to be responsible for the relatively smaller enthalpy range and limited variation in E-a for CN formation. (C) 2007 American Institute of Physics.
Resumo:
Explaining the uniqueness of the acquired somatic JAK2 V617F mutation, which is present in more than 95% of polycythemia vera patients, has been a challenge. The V617F mutation in the pseudokinase domain of JAK2 renders the unmutated kinase domain constitutively active. We have performed random mutagenesis at position 617 of JAK2 and tested each of the 20 possible amino acids for ability to induce constitutive signaling in Ba/F3 cells expressing the erythropoietin receptor. Four JAK2 mutants, V617W, V617M, V617I, and V617L, were able to induce cytokine independence and constitutive downstream signaling. Only V617W induced a level of constitutive activation comparable with V617F. Also, only V617W stabilized tyrosine-phosphorylated suppressor of cytokine signaling 3 ( SOCS3), a mechanism by which JAK2 V617F overcomes inhibition by SOCS3. The V617W mutant induced a myeloproliferative disease in mice, mainly characterized by erythrocytosis and megakaryocytic proliferation. Although JAK2 V617W would predictably be pathogenic in humans, the substitution of the Val codon, GTC, by TTG, the codon for Trp, would require three base pair changes, and thus it is unlikely to occur. We discuss how the predicted conformations of the activated JAK2 mutants can lead to better screening assays for novel small molecule inhibitors.
Resumo:
JAK2 V617F, identified in the majority of patients with myeloproliferative neoplasms, tyrosine phosphorylates SOCS3 and escapes its inhibition. Here, we demonstrate that the JAK2 exon 12 mutants described in a subset of V617F-negative MPN cases, also stabilize tyrosine phosphorylated SOCS3. SOCS3 tyrosine phosphorylation was also observed in peripheral blood mononuclear cells and granulocytes isolated from patients with JAK2 H538QK539L or JAY2 F537-K539delinsL mutations. JAK kinase inhibitors, which effectively inhibited the proliferation of cells expressing V617F or K539L, also caused a dose-dependent reduction in both mutant JAK2 and SOCS3 tyrosine phosphorylation. We propose, therefore, that SOCS3 tyrosine phosphorylation may be a novel bio-marker of myeloproliferative neoplasms resulting from a JAK2 mutation and a potential reporter of effective JAK2 inhibitor therapy currently in clinical development.
Resumo:
The halide derivatives of yttrium ortho-oxomolybdate YX[MoO4] (X = F, Cl) both crystallize in the monoclinic system with four formula units per unit cell. YF[MoO4] exhibits a primitive cell setting (space group P2(1)/c, a = 519.62(2) pm, b = 1225.14(7) pm, c = 663.30(3) pm, beta = 112.851(4)degrees), whereas the lattice of YCl[MoO4] shows face-centering (space group C2/m; a = 1019.02(5) pm, b = 720.67(4) pm, c = 681.50(3) pm, beta = 107.130(4)degrees). The two compounds each contain crystallographically unique Y3+ cations, which are found to have a coordination environment of six oxide and two halide anions. In the case of YF[MoO4], the coordination environment is seen as square antiprisms, and for YCl[MoO4], trigon-dodecahedra. are found. The discrete tetrahedral [MoO4](2-) units of the fluoride derivative are exclusively bound by six terminal Y3+ cations, while those of the chloride compound show a 5-fold coordination around the tetrahedra with one edge-bridging and four terminal Y3+ cations. The halide anions in each compound exhibit a coordination number of two, building up isolated planar rhombus-shaped units according to [Y2F2](4+) in YF[MoO4] and [Y2Cl2](4+) in YCl[MoO4], respectively. Both compounds were synthesized at high temperatures using Y2O3, MoO3, and the corresponding yttrium trihalide in a molar ratio of 1:3:1. Single crystals of both are insensitive to moist air and are found to be coarse shaped and colorless with optical band gaps situated in the near UV around 3.78 eV for the fluoride and 3.82 eV for the chloride derivative. Furthermore, YF[MoO4] seems to be a suitable material for doping to obtain luminescent materials because the Eu3+-doped compound shows an intense red luminescence, which has been spectroscopically investigated.
Resumo:
The molecular pathogenesis of diabetic nephropathy (DN), the leading cause of end-stage renal disease worldwide, is complex and not fully understood. Transforming growth factor-beta (TGF-beta1) plays a critical role in many fibrotic disorders, including DN. In this study, we report protein kinase B (PKB/Akt) activation as a downstream event contributing to the pathophysiology of DN. We investigated the potential of PKB/Akt to mediate the profibrotic bioactions of TGF-beta1 in kidney. Treatment of normal rat kidney epithelial cells (NRK52E) with TGF-beta1 resulted in activation of phosphatidylinositol 3-kinase (PI3K) and PKB/Akt as evidenced by increased Ser473 phosphorylation and GSK-3beta phosphorylation. TGF-beta1 also stimulated increased Smad3 phosphorylation in these cells, a response that was insensitive to inhibition of PI3K or PKB/Akt. NRK52E cells displayed a loss of zona occludins 1 and E-cadherin and a gain in vimentin and alpha-smooth muscle actin expression, consistent with the fibrotic actions of TGF-beta1. These effects were blocked with inhibitors of PI3K and PKB/Akt. Furthermore, overexpression of PTEN, the lipid phosphatase regulator of PKB/Akt activation, inhibited TGF-beta1-induced PKB/Akt activation. Interestingly, in the Goto-Kakizaki rat model of type 2 diabetes, we also detected increased phosphorylation of PKB/Akt and its downstream target, GSK-3beta, in the tubules, relative to that in control Wistar rats. Elevated Smad3 phosphorylation was also detected in kidney extracts from Goto-Kakizaki rats with chronic diabetes. Together, these data suggest that TGF-beta1-mediated PKB/Akt activation may be important in renal fibrosis during diabetic nephropathy.