985 resultados para Incompressible fluid
Resumo:
In view of the reported inflammatory effects of corticotrophin-releasing factor (CRF) and the associated regulatory elements in the gene of its binding protein (BP), we postulate that both BP as well as novel BP-ligands other than CRF may be involved in inflammatory disease. We have investigated BP in the blood of patients with arthritis and septicaemia and have attempted to identify CRF and other BP-ligands in synovial fluid. The BP was found to be significantly elevated in the blood of patients with rheumatoid arthritis and septicaemia. There was less BP-ligand and CRF in synovial fluid from patients with rheumatoid arthritis that from those with osteo- or psoriatic arthritis. There was at least 10-fold more BP-ligand than CRF in the fluid of all three groups of patients. A small amount of immunoreactive human (h)CRF, eluting in the expected position of CRF-41, was detected after high-pressure liquid chromatography of arthritic synovial fluid; however, the bulk of material with BP-ligand binding activity eluted earlier, suggesting that synovial fluid contained novel peptides that interacted with the BP. These results would suggest that the BP and its ligands could play an endocrine immunomodulatory role in inflammatory disease.
Resumo:
Lorenz’s theory of available p otential energy (APE) remains the main framework for studying the atmospheric and oceanic energy cycles. Because the APE generation rate is the volume integral of a thermodynamic efficiency times the local diabatic heating/cooling rate, APE theory is often regarded as an extension of the theory of heat engines. Available energetics in classical thermodynamics, however, usually relies on the concept of exergy, and is usually measured relative to a reference state maximising entropy at constant energy, whereas APE’s reference state minimises p otential energy at constant entropy. This review seeks to shed light on the two concepts; it covers local formulations of available energetics, alternative views of the dynamics/thermodynamics coupling, APE theory and the second law, APE production/dissipation, extensions to binary fluids, mean/eddy decomp ositions, APE in incompressible fluids, APE and irreversible turbulent mixing, and the role of mechanical forcing on APE production.
Resumo:
We present a new approach to determine palaeotemperatures (mean annual surface temperatures) based on measurements of the liquid–vapour homogenisation temperature of fluid inclusions in stalagmites. The aim of this study is to explore the potential and the limitations of this new palaeothermometer and to develop a reliable methodology for routine applications in palaeoclimate research. Therefore, we have investigated recent fluid inclusions from the top part of actively growing stalagmites that have formed at temperatures close to the present-day cave air temperature. A precondition for measuring homogenisation temperatures of originally monophase inclusions is the nucleation of a vapour bubble by means of single ultra-short laser pulses. Based on the observed homogenisation temperatures (Th(obs)) and measurements of the vapour bubble diameter at a known temperature, we calculated stalagmite formation temperatures (Tf) by applying a thermodynamic model that takes into account the effect of surface tension on liquid–vapour homogenisation. Results from recent stalagmite samples demonstrate that calculated stalagmite formation temperatures match the present-day cave air temperature within ± 0.2 °C. To avoid artificially induced changes of the fluid density we defined specific demands on the selection, handling and preparation of the stalagmite samples. Application of the method is restricted to stalagmites that formed at cave temperatures greater than ~ 9–11 °C.
Resumo:
From the concentrations of dissolved atmospheric noble gases in water, a so-called “noble gas temperature” (NGT) can be determined that corresponds to the temperature of the water when it was last in contact with the atmosphere. Here we demonstrate that the NGT concept is applicable to water inclusions in cave stalagmites, and yields NGTs that are in good agreement with the ambient air temperatures in the caves. We analysed samples from two Holocene and one undated stalagmite. The three stalagmites originate from three caves located in different climatic regions having modern mean annual air temperatures of 27 °C, 12 °C and 8 °C, respectively. In about half of the samples analysed Kr and Xe concentrations originated entirely from the two well-defined noble gas components air-saturated water and atmospheric air, which allowed NGTs to be determined successfully from Kr and Xe concentrations. One stalagmite seems to be particularly suitable for NGT determination, as almost all of its samples yielded the modern cave temperature. Notably, this stalagmite contains a high proportion of primary water inclusions, which seem to preserve the temperature-dependent signature well in their Kr and Xe concentrations. In future work on stalagmites detailed microscopic inspection of the fluid inclusions prior to noble gas analysis is therefore likely to be crucial in increasing the number of successful NGT determinations.
Resumo:
The concentrations of dissolved noble gases in water are widely used as a climate proxy to determine noble gas temperatures (NGTs); i.e., the temperature of the water when gas exchange last occurred. In this paper we make a step forward to apply this principle to fluid inclusions in stalagmites in order to reconstruct the cave temperature prevailing at the time when the inclusion was formed. We present an analytical protocol that allows us accurately to determine noble gas concentrations and isotope ratios in stalagmites, and which includes a precise manometrical determination of the mass of water liberated from fluid inclusions. Most important for NGT determination is to reduce the amount of noble gases liberated from air inclusions, as they mask the temperature-dependent noble gas signal from the water inclusions. We demonstrate that offline pre-crushing in air to subsequently extract noble gases and water from the samples by heating is appropriate to separate gases released from air and water inclusions. Although a large fraction of recent samples analysed by this technique yields NGTs close to present-day cave temperatures, the interpretation of measured noble gas concentrations in terms of NGTs is not yet feasible using the available least squares fitting models. This is because the noble gas concentrations in stalagmites are not only composed of the two components air and air saturated water (ASW), which these models are able to account for. The observed enrichments in heavy noble gases are interpreted as being due to adsorption during sample preparation in air, whereas the excess in He and Ne is interpreted as an additional noble gas component that is bound in voids in the crystallographic structure of the calcite crystals. As a consequence of our study's findings, NGTs will have to be determined in the future using the concentrations of Ar, Kr and Xe only. This needs to be achieved by further optimizing the sample preparation to minimize atmospheric contamination and to further reduce the amount of noble gases released from air inclusions.
The unsteady flow of a weakly compressible fluid in a thin porous layer II: three-dimensional theory
Resumo:
We consider the problem of determining the pressure and velocity fields for a weakly compressible fluid flowing in a three-dimensional layer, composed of an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting and/or extracting fluid. Numerical solution of this three-dimensional evolution problem may be expensive, particularly in the case that the depth scale of the layer h is small compared to the horizontal length scale l, a situation which occurs frequently in the application to oil and gas reservoir recovery and which leads to significant stiffness in the numerical problem. Under the assumption that $\epsilon\propto h/l\ll 1$, we show that, to leading order in $\epsilon$, the pressure field varies only in the horizontal directions away from the wells (the outer region). We construct asymptotic expansions in $\epsilon$ in both the inner (near the wells) and outer regions and use the asymptotic matching principle to derive expressions for all significant process quantities. The only computations required are for the solution of non-stiff linear, elliptic, two-dimensional boundary-value, and eigenvalue problems. This approach, via the method of matched asymptotic expansions, takes advantage of the small aspect ratio of the layer, $\epsilon$, at precisely the stage where full numerical computations become stiff, and also reveals the detailed structure of the dynamics of the flow, both in the neighbourhood of wells and away from wells.
Resumo:
We describe a novel method for determining the pressure and velocity fields for a weakly compressible fluid flowing in a thin three-dimensional layer composed of an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting and/or extracting fluid. Our approach uses the method of matched asymptotic expansions to derive expressions for all significant process quantities, the computation of which requires only the solution of linear, elliptic, two-dimensional boundary value and eigenvalue problems. In this article, we provide full implementation details and present numerical results demonstrating the efficiency and accuracy of our scheme.
Resumo:
Hamiltonian dynamics describes the evolution of conservative physical systems. Originally developed as a generalization of Newtonian mechanics, describing gravitationally driven motion from the simple pendulum to celestial mechanics, it also applies to such diverse areas of physics as quantum mechanics, quantum field theory, statistical mechanics, electromagnetism, and optics – in short, to any physical system for which dissipation is negligible. Dynamical meteorology consists of the fundamental laws of physics, including Newton’s second law. For many purposes, diabatic and viscous processes can be neglected and the equations are then conservative. (For example, in idealized modeling studies, dissipation is often only present for numerical reasons and is kept as small as possible.) In such cases dynamical meteorology obeys Hamiltonian dynamics. Even when nonconservative processes are not negligible, it often turns out that separate analysis of the conservative dynamics, which fully describes the nonlinear interactions, is essential for an understanding of the complete system, and the Hamiltonian description can play a useful role in this respect. Energy budgets and momentum transfer by waves are but two examples.
Resumo:
Rigorous upper bounds are derived that limit the finite-amplitude growth of arbitrary nonzonal disturbances to an unstable baroclinic zonal flow in a continuously stratified, quasi-geostrophic, semi-infinite fluid. Bounds are obtained bath on the depth-integrated eddy potential enstrophy and on the eddy available potential energy (APE) at the ground. The method used to derive the bounds is essentially analogous to that used in Part I of this study for the two-layer model: it relies on the existence of a nonlinear Liapunov (normed) stability theorem, which is a finite-amplitude generalization of the Charney-Stern theorem. As in Part I, the bounds are valid both for conservative (unforced, inviscid) flow, as well as for forced-dissipative flow when the dissipation is proportional to the potential vorticity in the interior, and to the potential temperature at the ground. The character of the results depends on the dimensionless external parameter γ = f02ξ/β0N2H, where ξ is the maximum vertical shear of the zonal wind, H is the density scale height, and the other symbols have their usual meaning. When γ ≫ 1, corresponding to “deep” unstable modes (vertical scale ≈H), the bound on the eddy potential enstrophy is just the total potential enstrophy in the system; but when γ≪1, corresponding to ‘shallow’ unstable modes (vertical scale ≈γH), the eddy potential enstrophy can be bounded well below the total amount available in the system. In neither case can the bound on the eddy APE prevent a complete neutralization of the surface temperature gradient which is in accord with numerical experience. For the special case of the Charney model of baroclinic instability, and in the limit of infinitesimal initial eddy disturbance amplitude, the bound states that the dimensionless eddy potential enstrophy cannot exceed (γ + 1)2/24&gamma2h when γ ≥ 1, or 1/6;&gammah when γ ≤ 1; here h = HN/f0L is the dimensionless scale height and L is the width of the channel. These bounds are very similar to (though of course generally larger than) ad hoc estimates based on baroclinic-adjustment arguments. The possibility of using these kinds of bounds for eddy-amplitude closure in a transient-eddy parameterization scheme is also discussed.
Resumo:
In addition to the Hamiltonian functional itself, non-canonical Hamiltonian dynamical systems generally possess integral invariants known as ‘Casimir functionals’. In the case of the Euler equations for a perfect fluid, the Casimir functionals correspond to the vortex topology, whose invariance derives from the particle-relabelling symmetry of the underlying Lagrangian equations of motion. In a recent paper, Vallis, Carnevale & Young (1989) have presented algorithms for finding steady states of the Euler equations that represent extrema of energy subject to given vortex topology, and are therefore stable. The purpose of this note is to point out a very general method for modifying any Hamiltonian dynamical system into an algorithm that is analogous to those of Vallis etal. in that it will systematically increase or decrease the energy of the system while preserving all of the Casimir invariants. By incorporating momentum into the extremization procedure, the algorithm is able to find steadily-translating as well as steady stable states. The method is applied to a variety of perfect-fluid systems, including Euler flow as well as compressible and incompressible stratified flow.
Resumo:
Disturbances of arbitrary amplitude are superposed on a basic flow which is assumed to be steady and either (a) two-dimensional, homogeneous, and incompressible (rotating or non-rotating) or (b) stably stratified and quasi-geostrophic. Flow over shallow topography is allowed in either case. The basic flow, as well as the disturbance, is assumed to be subject neither to external forcing nor to dissipative processes like viscosity. An exact, local ‘wave-activity conservation theorem’ is derived in which the density A and flux F are second-order ‘wave properties’ or ‘disturbance properties’, meaning that they are O(a2) in magnitude as disturbance amplitude a [rightward arrow] 0, and that they are evaluable correct to O(a2) from linear theory, to O(a3) from second-order theory, and so on to higher orders in a. For a disturbance in the form of a single, slowly varying, non-stationary Rossby wavetrain, $\overline{F}/\overline{A}$ reduces approximately to the Rossby-wave group velocity, where (${}^{-}$) is an appropriate averaging operator. F and A have the formal appearance of Eulerian quantities, but generally involve a multivalued function the correct branch of which requires a certain amount of Lagrangian information for its determination. It is shown that, in a certain sense, the construction of conservable, quasi-Eulerian wave properties like A is unique and that the multivaluedness is inescapable in general. The connection with the concepts of pseudoenergy (quasi-energy), pseudomomentum (quasi-momentum), and ‘Eliassen-Palm wave activity’ is noted. The relationship of this and similar conservation theorems to dynamical fundamentals and to Arnol'd's nonlinear stability theorems is discussed in the light of recent advances in Hamiltonian dynamics. These show where such conservation theorems come from and how to construct them in other cases. An elementary proof of the Hamiltonian structure of two-dimensional Eulerian vortex dynamics is put on record, with explicit attention to the boundary conditions. The connection between Arnol'd's second stability theorem and the suppression of shear and self-tuning resonant instabilities by boundary constraints is discussed, and a finite-amplitude counterpart to Rayleigh's inflection-point theorem noted
Resumo:
Although it plays a key role in the theory of stratified turbulence, the concept of available potential energy (APE) dissipation has remained until now a rather mysterious quantity, owing to the lack of rigorous result about its irreversible character or energy conversion type. Here, we show by using rigorous energetics considerations rooted in the analysis of the Navier-Stokes for a fully compressible fluid with a nonlinear equation of state that the APE dissipation is an irreversible energy conversion that dissipates kinetic energy into internal energy, exactly as viscous dissipation. These results are established by showing that APE dissipation contributes to the irreversible production of entropy, and by showing that it is a part of the work of expansion/contraction. Our results provide a new interpretation of the entropy budget, that leads to a new exact definition of turbulent effective diffusivity, which generalizes the Osborn-Cox model, as well as a rigorous decomposition of the work of expansion/contraction into reversible and irreversible components. In the context of turbulent mixing associated with parallel shear flow instability, our results suggests that there is no irreversible transfer of horizontal momentum into vertical momentum, as seems to be required when compressible effects are neglected, with potential consequences for the parameterisations of momentum dissipation in the coarse-grained Navier-Stokes equations.