984 resultados para Immunoglobulin Superfamily
Resumo:
Activation of Th1 or Th2 cells is associated with production of specific immunoglobulin isotypes, offering the opportunity to use antibody measurement for evaluation of T cell function. Schistosomiasis and visceral leishmaniasis are diseases associated with Th2 activation. However, an IgE response is not always detected in these patients. In the present study we evaluated specific IgE antibodies to S. mansoni and L. chagasi antigens by ELISA after depletion of serum IgG with protein G immobilized on Sepharose beads or RF-absorbent (purified sheep IgG antibodies anti-human IgG). In schistosomiasis patients, specific IgE to SWAP antigen was demonstrable in only 10 of 21 patients (48%) (mean absorbance ± SD = 0.102 ± 0.195) when unabsorbed serum was used. Depletion of IgG with protein G increased the number of specific IgE-positive tests to 13 (62%) and the use of RF-absorbent increased the number of positive results to 20 (95%) (mean absorbances ± SD = 0.303 ± 0.455 and 0.374 ± 0.477, respectively). Specific IgE anti-L. chagasi antibodies were not detected in unabsorbed serum from visceral leishmaniasis patients. When IgG was depleted with protein G, IgE antibodies were detected in only 3 (11%) of 27 patients, and the use of RF-absorbent permitted the detection of this isotype in all 27 visceral leishmaniasis sera tested (mean absorbance ± SD = 0.104 ± 0.03). These data show that the presence of IgG antibodies may prevent the detection of a specific IgE response in these parasite diseases. RF-absorbent, a reagent that blocks IgG-binding sites and also removes rheumatoid factor, was more efficient than protein G for the demonstration of specific IgE antibodies.
Resumo:
Adrenal glucocorticoid secretion is regulated by adrenocorticotropic hormone (ACTH) acting through a specific cell membrane receptor (ACTH-R). The ACTH-R is a member of the G protein superfamily-coupled receptors and belongs to the subfamily of melanocortin receptors. The ACTH-R is mainly expressed in the adrenocortical cells showing a restricted tissue specificity, although ACTH is recognized by the other four melanocortin receptors. The cloning of the ACTH-R was followed by the study of this gene in human diseases such as familial glucocorticoid deficiency (FGD) and adrenocortical tumors. FGD is a rare autosomal recessive disease characterized by glucocorticoid deficiency, elevated plasma ACTH levels and preserved renin/aldosterone secretion. This disorder has been ascribed to an impaired adrenal responsiveness to ACTH due to a defective ACTH-R, a defect in intracellular signal transduction or an abnormality in adrenal cortical development. Mutations of the ACTH-R have been described in patients with FGD in segregation with the disease. The functional characterization of these mutations has been prevented by difficulties in expressing human ACTH-R in cells that lack endogenous melanocortin receptor activity. To overcome these difficulties we used Y6 cells, a mutant variant of the Y1 cell line, which possesses a non-expressed ACTH-R gene allowing the functional study without any background activity. Our results demonstrated that the several mutations of the ACTH-R found in FGD result in an impaired cAMP response or loss of sensitivity to ACTH stimulation. An ACTH-binding study showed an impairment of ligand binding with loss of the high affinity site in most of the mutations studied.
Resumo:
Renal involvement in visceral leishmaniasis (VL) is very frequent. The renal lesions of humans and dogs are similar but their pathogenesis has not been clearly elucidated. There is growing evidence that the cellular immune response is involved in the pathogenesis of immunologically mediated glomerulonephritis. Since T cells could participate in the pathogenesis of nephropathy, in the present study we investigated the possible involvement of CD4+ and CD8+ T cells in the nephropathy of canine VL. Six dogs naturally infected with Leishmania (Leishmania) chagasi from the endemic area in the Northeast of Brazil, the town of Teresina in the State of Piauí, were studied. An expressive inflammatory infiltrate of CD4+ T cells both in glomeruli and in interstitium was present in 4 animals and absent in 2. CD8+ T cells were detected only in one animal. CD4+ T cells alone were observed in 3 animals; when CD8+ T cells were present CD4+ T cells were also present. CD4+ T cells were observed in cases of focal segmental glomerulosclerosis, diffuse membranoproliferative glomerulonephritis, diffuse mesangial proliferative glomerulonephritis and crescentic glomerulonephritis. CD8+ T cells were present only in a case of crescentic glomerulonephritis. Leishmania antigen was detected in glomeruli and in interstitial inflammatory infiltrate in 4 animals and immunoglobulins were observed in 4 dogs. In this study we observed that T cells, in addition to immunoglobulins, are present in the renal lesion of canine VL. Further studies are in progress addressing the immunopathogenic mechanisms involving the participation of immunoglobulins and T cells in canine VL nephropathy.
Resumo:
Two attenuated bacillus Calmette-Guérin (BCG) preparations derived from the same Moreau strain, Copenhagen but grown in Sauton medium containing starch and bacto-peptone (onco BCG, O-BCG), or asparagine (intradermal BCG, ID-BCG), exhibited indistinguishable DNA sequences and bacterial morphology. The number of viable bacilli recovered from spleen, liver and lungs was approximately the same in mice inoculated with the vaccines and was similarly reduced (over 90%) in mice previously immunized with either BCG vaccine. The humoral immune response evoked by the vaccines was, however, distinct. Spleen cell proliferation accompanying the growth of bacilli in tissue was significantly higher in mice inoculated with O-BCG. These cells proliferated in vitro upon challenge with the corresponding BCG extract. Previous cell treatment with mAb anti-CD4 T cells abolished this effect. Anti-BCG antibodies, as assayed either in serum by ELISA or by determining the number of antibody-producing spleen cells by the spot-ELISA method, were significantly higher in mice inoculated with ID-BCG. Anti-BCG antibodies were detected in all immunoglobulin classes, but they were more prevalent in IgG with the following distribution among its isotypes: IgG1>(IgG2a = IgG2b)>IgG3. When some well-characterized Mycobacterium tuberculosis antigens were used as substitutes for BCG extracts in ELISA, although antibodies against the 65-kDa and 96-kDa proteins were detected significantly, antibodies against the 71-kDa, 38-kDa proteins and lipoarabinomannan were only barely detected or even absent. These results indicate that BCG bacilli cultured in Sauton-asparagine medium permitted the multiplication of bacilli, tending to induce a stronger humoral immune response as compared with bacilli grown in Sauton-starch/bacto-peptone-enriched medium.
Resumo:
Nephrolithiasis is one of the most common diseases in the Western world. The disease manifests itself with intensive pain, sporadic infections, and, sometimes, renal failure. The symptoms are due to the appearance of urinary stones (calculi) which are formed mainly by calcium salts. These calcium salts precipitate in the renal papillae and/or within the collecting ducts. Inherited forms of nephrolithiasis related to chromosome X (X-linked hypercalciuric nephrolithiasis or XLN) have been recently described. Hypercalciuria, nephrocalcinosis, and male predominance are the major characteristics of these diseases. The gene responsible for the XLN forms of kidney stones was cloned and characterized as a chloride channel called ClC-5. The ClC-5 chloride channel belongs to a superfamily of voltage-gated chloride channels, whose physiological roles are not completely understood. The objective of the present review is to identify recent advances in the molecular pathology of nephrolithiasis, with emphasis on XLN. We also try to establish a link between a chloride channel like ClC-5, hypercalciuria, failure in urine acidification and protein endocytosis, which could explain the symptoms exhibited by XLN patients.
Resumo:
Ascaris suum allergenic components (PIII) separated by gel filtration chromatography of an adult worm extract were used to immunize BALB/c mice. Popliteal lymph node cells taken from the immunized animals were fused with SP2/O myeloma cells using polyethylene glycol (MW 1450) as fusogen. The hybridomas were cultured in HAT-containing medium and cloned at limiting dilutions. Supernatants from the growing hybrids were screened by ELISA using plates coated with PIII or the A. suum crude extract. The monoclonal antibody obtained, named MAC-3 (mouse anti-A. suum allergenic component), is an IgG1 kappa mouse immunoglobulin that specifically recognizes a 29,000 molecular weight protein (called allergenic protein) with an affinity constant of 1.7 x 10(9) M-1. The A. suum components recognized by MAC-3 induce specific IgE antibody production in immunized BALB/c mice. Ascitic fluid induced in Swiss mice by injecting ip the hybridoma cells and incomplete Freund's adjuvant was purified by affinity chromatography using a protein A-Sepharose column. The purified monoclonal antibody was then coupled to activated Sepharose beads in order to isolate the A. suum allergenic component from the whole extract by affinity chromatography.
Resumo:
The hormone 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), the active form of vitamin D3, is an important regulator of calcium homeostasis, exerts antiproliferative effects on various cell systems and can induce differentiation in some kinds of hematopoietic cells. These effects are triggered by its receptor, vitamin D receptor (VDR), a phosphoprotein member of the nuclear receptor superfamily, which functions as a transcriptional factor. VDR binds as a heterodimer with retinoid X receptor (R X R) to hexameric repeats, characterized as vitamin D-responsive elements present in the regulatory region of target genes such as osteocalcin, osteopontin, calbindin-D28K, calbindin-D9K, p21WAF1/CIP1, TGF-ß2 and vitamin D 24-hydroxylase. Many factors such as glucocorticoids, estrogens, retinoids, proliferation rate and cell transformation can modulate VDR levels. VDR is expressed in mammary tissue and breast cancer cells, which are potential targets to hormone action. Besides having antiproliferative properties, vitamin D might also reduce the invasiveness of cancer cells and act as an anti-angiogenesis agent. All of these antitumoral features suggest that the properties of vitamin D could be explored for chemopreventive and therapeutic purposes in cancer. However, hypercalcemia is an undesirable side effect associated with pharmacological doses of 1,25-(OH)2D3. Some promising 1,25-(OH)2D3 analogs have been developed, which are less hypercalcemic in spite of being potent antiproliferative agents. They represent a new field of investigation.
Resumo:
The aim of the present study was to evaluate the acidification of the endosome-lysosome system of renal epithelial cells after endocytosis of two human immunoglobulin lambda light chains (Bence-Jones proteins, BJP) obtained from patients with multiple myeloma. Renal epithelial cell handling of two BJP (neutral and acidic BJP) was evaluated by rhodamine fluorescence. Renal cells (MDCK) were maintained in culture and, when confluent, were incubated with rhodamine-labeled BJP for different periods of time. Photos were obtained with a fluorescence microscope (Axiolab-Zeiss). Labeling density was determined on slides with a densitometer (Shimadzu Dual-Wavelength Flying-Spot Scanner CS9000). Endocytosis of neutral and acidic BJP was correlated with acidic intracellular compartment distribution using acridine orange labeling. We compared the pattern of distribution after incubation of native neutral and acidic BJP and after complete deglycosylation of BJP by periodate oxidation. The subsequent alteration of pI converted neutral BJP to acidic BJP. There was a significant accumulation of neutral BJP in endocytic structures, reduced lysosomal acidification, and a diffuse pattern of acidification. This pattern was reversed after total deglycosylation and subsequent alteration of the pI to an acidic BJP. We conclude that the physicochemical characteristics of BJP interfere with intracellular acidification, possibly explaining the strong nephrotoxicity of neutral BJP. Lysosomal acidification is fundamental for adequate protein processing and catabolism.
Resumo:
Allergy is characterized by T helper (Th) 2-type immune response after encounter with an allergen leading to subsequent immunoglobulin (Ig) E-mediated hypersensitivity reaction and further allergic inflammation. Allergen-specific immunotherapy (SIT) balances the Th2-biased immunity towards Th1 and T regulatory responses. Adjuvants are used in allergen preparations to intensify and modify SIT. β-(1,2)-oligomannoside constituents present in Candida albicans (C. albicans) cell wall possess Th1-type immunostimulatory properties. The aim of this thesis was to develop a β-(1,2)-linked carbohydrate compound with known structure and anti-allergic properties to be applied as an adjuvant in SIT. First the immunostimulatory properties of various fungal extracts were studied. C. albicans appeared to be the most promising Th1-inducing extract, which led to the synthesis of various mono- or divalent oligomannosides designed on the basis of C. albicans. These carbohydrates did not induce strong cytokine production in human peripheral blood mononuclear cell (PBMC) cultures. In contrast to earlier reports using native oligosaccharides from C. albicans, synthetic -(1,2)-linked mannotetraose did not induce any tumor necrosis factor production in murine macrophages. Next, similarities with synthesized divalent mannosides and the antigenic epitopes of β-(1,2)-linked C. albicans mannan were investigated. Two divalent compounds inhibited specific IgG antibodies binding to below 3 kDa hydrolyzed mannan down to the level of 30–50% showing similar antigenicity to C. albicans. Immunomodulatory properties of synthesized carbohydrate assemblies ranging from mono- to pentavalent were evaluated. A trivalent acetylated dimannose (TADM) induced interleukin-10 (IL-10) and interferon-γ responses. TADM also suppressed birch pollen induced IL-4 and IL-5 responses in allergen (Bet v) stimulated PBMCs of birch pollen allergic subjects. This suppression was stronger with TADM than with other used adjuvants, immunostimulatory oligonucleotides and monophosphoryl lipid A. In a murine model of asthma, the allergen induced inflammatory responses could also be suppressed by TADM on cytokine and antibody levels.
Resumo:
Tissue factor is a transmembrane procoagulant glycoprotein and a member of the cytokine receptor superfamily. It activates the extrinsic coagulation pathway, and induces the formation of a fibrin clot. Tissue factor is important for both normal homeostasis and the development of many thrombotic diseases. A wide variety of cells are able to synthesize and express tissue factor, including monocytes, granulocytes, platelets and endothelial cells. Tissue factor expression can be induced by cell surface components of pathogenic microorganisms, proinflammatory cytokines and membrane microparticles released from activated host cells. Tissue factor plays an important role in initiating thrombosis associated with inflammation during infection, sepsis, and organ transplant rejection. Recent findings suggest that tissue factor can also function as a receptor and thus may be important in cell signaling. The present minireview will focus on the role of tissue factor in the pathogenesis of septic shock, infectious endocarditis and invasive aspergillosis, as determined by both in vivo and in vitro models.
Resumo:
Non-metallic implants made of bioresorbable or biostable synthetic polymers are attractive options in many surgical procedures, ranging from bioresorbable suture anchors of arthroscopic surgery to reconstructive skull implants made of biostable fiber-reinforced composites. Among other benefits, non-metallic implants produce less interference in imaging. Bioresorbable polymer implants may be true multifunctional, serving as osteoconductive scaffolds and as matrices for simultaneous delivery of bone enhancement agents. As a major advantage for loading conditions, mechanical properties of biostable fiber-reinforced composites can be matched with those of the bone. Unsolved problems of these biomaterials are related to the risk of staphylococcal biofilm infections and to the low osteoconductivity of contemporary bioresorbable composite implants. This thesis was focused on the research and development of a multifunctional implant model with enhanced osteoconductivity and low susceptibility to infection. In addition, the experimental models for assessment, diagnostics and prophylaxis of biomaterial-related infections were established. The first experiment (Study I) established an in vitro method for simultaneous evaluation of calcium phosphate and biofilm formation on bisphenol-Aglycidyldimethacrylate and triethylenglycoldimethacrylate (BisGMA-TEGDMA) thermosets with different content of bioactive glass 45S5. The second experiment (Study II) showed no significant difference in osteointegration of nanostructured and microsized polylactide-co-glycolide/β-tricalcium phosphate (PLGA /β-TCP) composites in a minipig model. The third experiment (Study III) demonstrated that positron emission tomography (PET) imaging with the novel 68Ga labelled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) CD33 related sialic-acid immunoglobulin like lectins (Siglec-9) tracer was able to detect inflammatory response to S. epidermidis and S. aureus peri-implant infections in an intraosseous polytetrafluoroethylene catheter model. In the fourth experiment (Study IV), BisGMATEGDMA thermosets coated with lactose-modified chitosan (Chitlac) and silver nanoparticles exhibited antibacterial activity against S. aureus and P. aeruginosa strains in an in vitro biofilm model and showed in vivo biocompatibility in a minipig model. In the last experiment (Study V), a selective androgen modulator (SARM) released from a poly(lactide)-co-ε-caprolactone (PLCL) polymer matrix failed to produce a dose-dependent enhancement of peri-implant osteogenesis in a bone marrow ablation model.
Resumo:
Cissampelos sympodialis Eichl species are used in folk medicine for the treatment of asthma, arthritis and rheumatism. In the present study, we investigated the immunomodulatory effect of an aqueous fraction of a 70% (v/v) ethanol extract of C. sympodialis leaves on B lymphocyte function. The hydroalcoholic extract inhibited the in vitro proliferative response of resting B cells induced by LPS (IC50 = 17.2 µg/ml), anti-delta-dextran (IC50 = 13.9 µg/ml) and anti-IgM (IC50 = 24.3 µg/ml) but did not affect the anti-MHC class II antibody-stimulated proliferative response of B cell blasts obtained by stimulation with IL-4 and anti-IgM. Incubation with the hydroalcoholic extract used at 50 µg/ml induced a 700% increase in intracellular cAMP levels. IgM secretion by resting B cells (obtained from normal mice) and polyclonally activated B cells (obtained from Trypanosoma cruzi-infected animals) was inhibited by the hydroalcoholic extract. The latter were more sensitive to the hydroalcoholic extract since 6.5 µg/ml induced a 20% inhibition in the response of cells from normal mice while it inhibited the response of B cells from infected animals by 75%. The present data indicate that the alcoholic extract of C. sympodialis inhibited B cell function through an increase in intracellular cAMP levels. The finding that the hydroalcoholic extract inhibited immunoglobulin secretion suggests a therapeutic use for the extract from C. sympodialis in conditions associated with unregulated B cell function and enhanced immunoglobulin secretion. Finally, the inhibitory effect of the hydroalcoholic extract on B cells may indicate an anti-inflammatory effect of this extract.
Resumo:
The extract of Ascaris suum suppresses the humoral and cellular immune responses to unrelated antigens in the mouse. In order to further characterize the suppressive components of A. suum, we produced specific monoclonal antibodies which can provide an important tool for the identification of these proteins. The A. suum immunosuppressive fractions isolated by gel filtration from an extract of adult worms were used to immunize BALB/c mice. Popliteal lymph node cells taken from the immunized animals were fused with SP2/O myeloma cells and the cloned hybrid cells obtained were screened to determine the specificity of secreted antibodies. Three monoclonal antibodies named MAIP-1, MAIP-2 and MAIP-3 were selected and were shown to react with different epitopes of high molecular weight proteins from the A. suum extract. All antibody molecules have kappa-type light chains but differ in heavy chain isotype. MAIP-1 is a mouse IgM, MAIP-2 is an IgA immunoglobulin and MAIP-3 is an IgG1 immunoglobulin and they recognize the antigen with affinity constants of 1.3 x 10(10) M-1, 7.1 x 10(9) M-1 and 3.8 x 10(7) M-1, respectively. The proteins recognized by these monoclonal antibodies (PAS-1, PAS-2 and PAS-3) were purified from the crude extract by affinity chromatography and injected with ovalbumin in BALB/c mice in order to determine their suppressive activity on heterologous antibody production. It was demonstrated that these three proteins are able to significantly suppress anti-ovalbumin antibody secretion, with PAS-1 being more efficient than the others.
Resumo:
In a previous study we monitored the distribution and phenotype expression of B1 cells during the evolution of experimental murine schistosomiasis mansoni and we proposed that the B1 cells were heterogeneous: a fraction which originated in the spleen and followed the migratory pathway to mesenteric ganglia, while the other was the resident peritoneal B1-cell pool. In the present study, we have addressed the question of whether these two B1-lymphocyte populations are involved in the production of the late Ig isotype IgE, which is present in high levels in schistosomal infection. Lymphocyte expression of surface markers and immunoglobulins were monitored by immunofluorescence flow cytometry. Both in the spleen and mesenteric ganglia, the B1 and B2 cells were induced to switch from IgM to IgE in the early Th2-dominated phase of the disease, with an increase of IgE in its later phases. Conversely, peritoneal B1-IgM+ switched to the remaining IgE+ present in high numbers in the peritoneal cavity throughout the disease. We correlated the efficient induction of the expression of late Ig isotypes by B1 cells with high levels of inflammatory cytokines due to the intense host response to the presence of worms and their eggs in the abdominal cavity. In conclusion, B1 cells have a different switch behavior from IgM to IgE indicating that these cell sub-populations depend on the microenvironment.
Resumo:
Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the transforming growth factor ß superfamily. Family members are expressed during limb development, endochondral ossification, early fracture, and cartilage repair. The activity of BMPs was first identified in the 1960s but the proteins responsible for bone induction were unknown until the purification and cloning of human BMPs in the 1980s. To date, about 15 BMP family members have been identified and characterized. The signal triggered by BMPs is transduced through serine/threonine kinase receptors, type I and II subtypes. Three type I receptors have been shown to bind BMP ligands, namely: type IA and IB BMP receptors and type IA activin receptors. BMPs seem to be involved in the regulation of cell proliferation, survival, differentiation and apoptosis, but their hallmark is their ability to induce bone, cartilage, ligament, and tendon formation at both heterotopic and orthotopic sites. This suggests that, in the future, they may play a major role in the treatment of bone diseases. Several animal studies have illustrated the potential of BMPs to enhance spinal fusion, repair critical-size defects, accelerate union, and heal articular cartilage lesions. Difficulties in producing and purifying BMPs from bone tissue have prompted the attempts made by several laboratories, including ours, to express these proteins in the recombinant form in heterologous systems. This review focuses on BMP structure, molecular mechanisms of action and significance and potential applications in medical, dental and veterinary practice for the treatment of cartilage and bone-related diseases.