975 resultados para Immune response.
Resumo:
The immune response expressed by IgG antibodies in BALB/c mice experimentally infected with Toxocara canis, was studied with the aim of verifying the possible in vivo cross-reactivity between antigens of T. canis and other parasites (Ascaris suum, Taenia crassiceps, Schistosoma mansoni, Strongyloides venezuelensis and Toxoplasma gondii). Experiments included three groups of mice: one infected only by T. canis, another with one of the other species of parasites and a third concomitantly infected with T. canis and the other species in question. Animals were bled by orbital plexus at 23, 38 and 70 days post infection (p.i.). Sera were analyzed for anti-Toxocara antibodies by ELISA and Immunoblotting, using excretion-secretion antigens (ES), obtained from culture of third-stage larvae of T. canis. For all experiments a control group comprised by ten non-infected mice was used. Only in the case of A. suum infection, in these experimental conditions, the occurrence of cross-reactivity with T. canis was observed. However, in the case of co-infection of T. canis - S. mansoni, T. canis - S. venezuelensis and T. canis - T. crassiceps the production of anti-Toxocara antibodies was found at levels significantly lower than those found in mice infected with T. canis only. Co-infection with S. mansoni or S. venezuelensis showed lower mortality rates compared to what occurred in the animals with single infections. Results obtained in mice infected with T. canis and T. gondii showed significant differences between the mean levels of the optical densities of animals infected with T. canis and concomitantly infected with the protozoan only in the 23rd day p.i.
Resumo:
OBJECTIVES: The aim of this study was to describe the pattern of expression of Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4) in skin biopsies of patients with American tegumentary leishmaniasis (ATL) caused by Leishmania braziliensis. METHODS: This prospective study evaluated 12 patients with ATL caused by Leishmania braziliensis confirmed by polymerase chain reaction. Immunohistochemistry was performed to determine the expression of TLR2 and TLR4. The number of NK cells, dendritic cells and macrophages in the tissue were calculated. The cytokine expression was determined using the anti-TNF-α, anti-IFN-Γ, anti-IL-1 and anti-IL-6. Double immunostaining reactions were used to determine the cell expressing TLR2 and TLR4. RESULTS: The numbers of cells expressing TLR2 and TLR4 were 145.48 ± 82.46 cell/mm² and 3.26 ± 4.11 cell/mm² respectively (p < 0.05). There was no correlation of TLR2 and TLR4 with the amount of cytokines and the number of NK cells, dendritic cells or macrophages. The double immunostaining revealed that TLR2 was expressed by macrophages. CONCLUSION: In human cutaneous leishmaniasis caused by Leishmania braziliensis, TLR2 is the most common TLR expressed during active disease, mainly by macrophages although without correlation with the amount of cytokines and number of cells.
Resumo:
This dissertation is presented to obtain a Master degree in Structural and Functional Biochemistry
Resumo:
Leishmaniasis remains a major public health problem worldwide and is classified as Category I by the TDR/WHO, mainly due to the absence of control. Many experimental models like rodents, dogs and monkeys have been developed, each with specific features, in order to characterize the immune response to Leishmania species, but none reproduces the pathology observed in human disease. Conflicting data may arise in part because different parasite strains or species are being examined, different tissue targets (mice footpad, ear, or base of tail) are being infected, and different numbers (“low” 1×102 and “high” 1×106) of metacyclic promastigotes have been inoculated. Recently, new approaches have been proposed to provide more meaningful data regarding the host response and pathogenesis that parallels human disease. The use of sand fly saliva and low numbers of parasites in experimental infections has led to mimic natural transmission and find new molecules and immune mechanisms which should be considered when designing vaccines and control strategies. Moreover, the use of wild rodents as experimental models has been proposed as a good alternative for studying the host-pathogen relationships and for testing candidate vaccines. To date, using natural reservoirs to study Leishmania infection has been challenging because immunologic reagents for use in wild rodents are lacking. This review discusses the principal immunological findings against Leishmania infection in different animal models highlighting the importance of using experimental conditions similar to natural transmission and reservoir species as experimental models to study the immunopathology of the disease.
Resumo:
A case-control study was conducted to examine the association among the Montenegro skin test (MST), age of skin lesion and therapeutic response in patients with cutaneous leishmaniasis (CL) treated at Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil. For each treatment failure (case), two controls showing skin lesion healing following treatment, paired by sex and age, were randomly selected. All patients were treated with 5 mg Sb5+/kg/day of intramuscular meglumine antimoniate (Sb5+) for 30 successive days. Patients with CL were approximately five times more likely to fail when lesions were less than two months old at the first appointment. Patients with treatment failure showed less intense MST reactions than patients progressing to clinical cure. For each 10 mm of increase in MST response, there was a 26% reduction in the chance of treatment failure. An early treatment - defined as a treatment applied for skin lesions, which starts when they are less than two months old at the first appointment -, as well as a poor cellular immune response, reflected by lower reactivity in MST, were associated with treatment failure in cutaneous leishmaniasis.
Resumo:
There are few studies on the role of innate immune response in dermatophytosis. An investigation was conducted to define the involvement of Toll-Like Receptors (TLRs) 2 and 4 in localized (LD) and disseminated (DD) dermatophytosis due to T. rubrum. Fifteen newly diagnosed patients, eight patients with LD and seven with DD, defined by involvement of at least three body segments were used in this study. Controls comprised twenty skin samples from healthy individuals undergoing plastic surgery. TLR2 and TLR4 were quantified in skin lesions by immunohistochemistry. A reduced expression of TLR4 in the lower and upper epidermis of both LD and DD patients was found compared to controls; TLR2 expression was preserved in the upper and lower epidermis of all three groups. As TLR4 signaling induces the production of inflammatory cytokines and neutrophils recruitment, its reduced expression likely contributed to the lack of resolution of the infection and the consequent chronic nature of the dermatophytosis. As TLR2 expression acts to limit the inflammatory process and preserves the epidermal structure, its preserved expression may also contribute to the persistent infection and limited inflammation that are characteristic of dermatophytic infections.
Resumo:
Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina
Resumo:
SUMMARYParacoccidioidomycosis (PCM), caused by Paracoccidioides spp, is an important endemic mycosis in Latin America. There are two recognized Paracoccidioides species, P. brasiliensis and P. lutzii, based on phylogenetic differences; however, the pathogenesis and disease manifestations of both are indistinguishable at present. Approximately 1,853 (~51,2%) of 3,583 confirmed deaths in Brazil due to systemic mycoses from 1996-2006 were caused by PCM. Antifungal treatment is required for patients with PCM. The initial treatment lasts from two to six months and sulfa derivatives, amphotericin B, azoles and terbinafine are used in clinical practice; however, despite prolonged therapy, relapses are still a problem. An effective Th1-biased cellular immune response is essential to control the disease, which can be induced by exogenous antigens or modulated by prophylactic or therapeutic vaccines. Stimulation of B cells or passive transference of monoclonal antibodies are also important means that may be used to improve the efficacy of paracoccidioidomycosis treatment in the future. This review critically details major challenges facing the development of a vaccine to combat PCM.
Resumo:
SUMMARYConsidered to be an emerging endemic mycosis in Latin America, paracoccidioidomycosis is characterized by a chronic course and involvement of multiple organs in immunocompromised hosts. Infection sequelae are mainly related to pulmonary and adrenal insufficiency. The host-parasite interaction results in different expressions of the immune response depending on parasite pathogenicity, fungal load and genetic characteristics of the host. A few controlled and case series reports have shown that azoles and fast-acting sulfa derivatives are useful treatment alternatives in milder forms of the disease. For moderate/severe cases, more prolonged treatments or even parenteral routes are required especially when there is involvement of the digestive tract mucosa, resulting in poor drug absorption. Although comparative studies have reported that shorter treatment regimens with itraconazole are able to induce cure in chronically-infected patients, there are still treatment challenges such as the need for more controlled studies involving acute cases, the search for new drugs and combinations, and the search for compounds capable of modulating the immune response in severe cases as well as the paradoxical reactions.
Resumo:
Toxoplasmosis is frequently acquired through the oral route by the ingestion of cysts or oocysts of Toxoplasma gondii. Once ingested, the parasites penetrate the intestinal epithelial cells and rapidly disseminate to all organs in the host. During T. gondii infection, the intestinal microbiota plays an important role in stimulating a protective immune response against the parasite. In this sense the use of probiotics is worthy of note since they are live microorganisms that have beneficial effects on the host through stimulation of the immune response that can be important in the control of T. gondii proliferation and dissemination in the host. In the present study, the action of the probiotic Bifidobacterium animalis subsp. lactis was investigated in C57BL/6 mice infected with oocysts of ME49 strain of T. gondii. The probiotic had an immunomodulatory action, inducing CD19 lymphocyte proliferation and consequently increasing anti-T. gondii antibody level.Bifidobacterium animalis subsp. lactisprovided protection in supplemented mice, compared to the control group. In addition, supplemented animals had milder inflammatory process in the small intestine, indicating that the probiotic protects the intestinal mucosa during infection with T. gondii. It was concluded that the probioticB. animalis subsp. lactis induces humoral immune response capable of providing protection against T. gondii infection.
Resumo:
The use of antilymphocytic serum (ALS) in dogs suppressed the immune response of a vacclnated and simultaneously ALS treated animal, increased the infectivity of a virulent strain and did not induce a typical infectian-disease in 3 dogs receiving the serum and the avirulent PF strain.
Resumo:
Fifty male white Swiss mice aged 4 weeks were inoculated with 5 x 10(5) viable yeast forms of Paracoccidioides brasiliensis (strain 18). Ten of these animals had been previously immunized with particulate P. brasiliensis antigenfor 4 weeks by intradermal injection. The controls consisted of 10 animals that were only immunized and 10 animals submitted to no treatment. The animals were sacrificed 2, 4, 7,11 and 16 weeks later. We studied: 1) the anti-P. brasiliensis delayed hypersensitivity response measured by the footpad test 24 hours prior to sacrifice; 2) the specific antibody production measured by double immunodiffusion in agar gel; 3) the histopathology of lungs, liver, spleen, adrenals and kidneys. We observed that: a) the immunized animals developed more intense cell-immune responses than the infected ones; b) infection reduced the cell- immune response of the immunized animals; c) intravenous infection of mice with P. brasiliensis was characterized by a systemic and progressive granulomatous inflammation. The animals infected after previous immunization showed less extensive lung inflammation, with smaller granulomas and fewer fungi. The results indicate that the present murine model mimics some findings of the human subacute form of paracoccidioidomycosis (systemic disease with depressed cellular immunity) and that the extrapulmonary immunization scheme was able to induce a certain degree of protection of the lung from infection with P. brasiliensis
Resumo:
Infection by Trypanosoma cruzi in mice depresses hepatic granuloma formation around Schistosoma mansoni eggs. This immunodepressive effect occurred in mice with Chagas' disease at the acute and/or chronic phases, granulomas being signijicantly smaller than those in Controls. Data suggest that Chagas ' disease depresses the delayed hypersensitivity immune response directly.
Resumo:
A competitive antibody enzyme immunoassay, using a monoclonal antibody against the species-specific Trypanosoma crnzi antigen 5, was used to investigate the presence of anti-component 5 antibodies in sera of opossums, dogs, rabbits and rats infected with this parasite. The sera from 51 Venezuelan patients with Chagasdisease were also tested. About 90% of the infected subjects showed significant levels of anti-component 5 antibodies. Nevertheless, these antibodies were not detected in the sera of dogs, rats and opossums infected with T. cruzl Some sera from infected rabbits presented significant results but close to the limit ofpositivity ofthe test. These findings suggest that the immune response in animals naturally or experimentally infected with T. cruzi is different from that observed in human Chagasdisease.
Resumo:
Levamisole (phenylimidothiazol), considered a strong immunostimulant, when administered to healthy Swiss mice did not cause a significant increase in -the weight of their thymus, liver and spleen, even though the drug was used at different times before removing such organs. High doses ofdrug used in the 4-day prophylactic scheme had no antimalarial effect. However, when given to malaria infected mice 24 hours before, at the same time, and 24 hours after the inoculation of a chloroquine-sensitive or a chloroquine-resistant strain of Plasmodium berghei small doses of the drug induced a somewhat decreased parasitemia, the dose of 1 mg/kg body weight before the inoculum being the best scheme. The mortality rates by malaria in the levamisole treated groups were also delayed although all mice finally died. The data suggest that levamisole may display a stimulant effect on the depressed immune response caused by malaria.