990 resultados para Imaging optics
Resumo:
The search for the progenitors of six core-collapse supernovae (CCSNe) in archival Hubble Space Telescope (HST) WFPC2 pre-explosion imaging is presented. These SNe are 1999an, 1999br, 1999ev, 2000ds, 2000ew and 2001B. Post-explosion imaging of the SNe, with the HST ACS/WFC, has been utilized with the technique of differential astrometry to identify the progenitor locations on the pre-explosion imaging. SNe 1999br, 1999ev, 2000ew and 2001B are recovered in late-time imaging, and estimates of the progenitor locations on the pre-explosion imaging, with subpixel accuracy, have been made. Only the progenitor of the Type II-P SN 1999ev has been recovered, on pre-explosion F555W imaging, at a 4.8 sigma significance level. Assuming a red supergiant progenitor, the pre-explosion observation is consistent with M-ZAMS = 15-18 M-circle dot. The progenitors of the other five SNe were below the 3 sigma detection threshold of the pre-explosion observations. The detection thresholds were translated to mass limits for the progenitors by comparison with stellar evolution models. Pre-explosion observations of the peculiarly faint SN 1999br limit the mass of a red supergiant progenitor to M-ZAMS
Resumo:
We analyze Space Telescope Imaging Spectrograph (STIS) spectra in the 1150-1700 Angstrom wavelength range obtained for six early B supergiants in the neighboring galaxy M31. Because of their likely high ( nearly solar) abundance, these stars were originally chosen to be directly comparable to their Galactic counterparts and represent a much needed addition to our current sample of B-type supergiants, in our efforts to study the dependence of the wind momentum-luminosity relationship on spectral type and metallicity. As a first step to determine wind momenta we fit the P Cygni profiles of the resonance lines of N V, Si IV, and C IV with standard methods and derive terminal velocities for all of the STIS targets. From these lines we also derive ionic stellar wind column densities. Our results are compared with those obtained previously in Galactic supergiants and confirm earlier claims of
Resumo:
We measure the two-dimensional, near-field spatial distribution of a 140-Angstrom nickel-like silver x-ray laser at the output aperture with high magnification using a curved multilayer x-ray mirror to image the output onto an x-ray charge-coupled device camera. Lasing is created by illuminating silver slab targets with a pair of 75 ps laser pulses separated by 2.2 nsec from the Vulcan laser. The two-dimensional, high-resolution, spatial image shows the x-ray laser source size and its position relative to the target surface. A dramatic change in both the position and source size are observed for the refraction compensating curved target as compared with the flat targets.
NEAR-FIELD IMAGING OF THE C-VI HIGH-GAIN RECOMBINATION X-RAY LASER-DRIVEN BY A 20-J, 2 PS LASER-BEAM
Resumo:
Coupling of a soft X-ray laser beam with a relaying concave mirror in a sequentially pumped amplifier geometry using the Ne-like Ge system has been studied experimentally. Preliminary observations indicate an increase in the spatial coherence of the amplified relayed beam. In addition, near-field imaging of one of the amplifier plasmas shows a double-lobed intensity pattern of the emergent beam indicating refractive guiding of the amplified beam with components both normal and tangential to the target surface.
Resumo:
An imaging microscope, comprising a Schwarzchild condenser and zone plate optical arrangement, has been established on the Vulcan Nd-glass laser system at the Rutherford Appleton Laboratory (RAL). Images of simple test structures have been taken in X-ray transmission using doublet X-ray laser radiation at 23.2 nm and 23.6 nm from collisionally pumped Ne-like germanium. Image resolution of about 0.15 mum has been measured.
Resumo:
We present images of the source of extreme ultraviolet (XUV) harmonic emission at a wavelength of 220 Angstrom from the interaction of a 20 TW, 1.053 mu m Nd:glass laser beam focused to intensities up to 4x10(18) W cm(-2) onto a solid target. From these measurements we determine an upper limit to the source size and brightness of the harmonic emission to show its efficacy as a novel source of short-pulse, coherent XUV radiation. We also demonstrate the empirical scaling of the harmonic generation efficiency with irradiance up to 10(19) W mu m(2) cm(-2), and extrapolate to estimate the possible source brightness at higher irradiances. These source brightnesses are compared to those available from an x-ray laser system. (C) 1997 American Institute of Physics.
Resumo:
The application of microbeams is providing new insights into the actions of radiation at the cell and tissue levels. So far, this has been achieved exclusively through the use of collimated charged particles. One alternative is to use ultrasoft X rays, focused by X-ray diffractive optics. We have developed a unique facility that uses 0.2-0.8-mm-diameter zone plates to focus ultrasoft X rays to a beam of less than 1 mum diameter. The zone plate images characteristic K-shell X rays of carbon or aluminum, generated by focusing a beam of 5-10 keV electrons onto the appropriate target. By reflecting the X rays off a grazing-incidence mirror, the contaminating bremsstrahlung radiation is reduced to 2%. The focused X rays are then aimed at selected subcellular targets using rapid automated cell-finding and alignment procedures; up to 3000 cells per hour can be irradiated individually using this arrangement. (C) 2001 by Radiation Research Society.
Resumo:
Passive equipments operating in the 30-300 GHZ (millimeter wave) band are compared to those in the 300 GHz-3 THz (submillimeter band). Equipments operating in the submillimeter band can measure distance and also spectral information and have been used to address new opportunities in security. Solid state spectral information is available in the submillimeter region making it possible to identify materials, whereas in millimeter region bulk optical properties determine the image contrast. The optical properties in the region from 30 GHz to 3 THz are discussed for some typical inorganic and organic solids. in the millimeter-wave region of the spectrum, obscurants such as poor weather, dust, and smoke can be penetrated and useful imagery generated for surveillance. in the 30 GHZ-3 THZ region dielectrics such as plastic and cloth are also transparent and the detection of contraband hidden under clothing is possible. A passive millimeter-wave imaging concept based on a folded Schmidt camera has been developed and applied to poor weather navigation and security. The optical design uses a rotating mirror and is folded using polarization techniques. The design is very well corrected over a wide field of view making it ideal for surveillance, and security. This produces a relatively compact imager which minimizes the receiver count.