944 resultados para Hydrogenated amorphous carbon - Pretective effects


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Live (Rose Bengal stained) and dead benthic foraminifera of surface and subsurface sediments from 25 stations in the eastern South Atlantic Ocean and the Atlantic sector of the Southern Ocean were analyzed to decipher a potential influence of seasonally and spatially varying high primary productivity on the stable carbon isotopic composition of foraminiferal tests. Therefore, stations were chosen so that productivity strongly varied, whereas conservative water mass properties changed only little. To define the stable carbon isotopic composition of dissolved inorganic carbon (d13CDIC) in ambient water masses, we compiled new and previously published d13CDIC data in a section running from Antarctica through Agulhas, Cape and Angola Basins, via the Guinea Abyssal Plain to the Equator. We found that intraspecific d13C variability of all species at a single site is constantly low throughout their distribution within the sediments, i.e. species specific and site dependent mean values calculated from all subbottom depths on average only varied by +/-0.09 per mil. This is important because it makes the stable carbon isotopic signal of species independent of the particular microhabitat of each single specimen measured and thus more constant and reliable than has been previously assumed. So-called vital and/or microhabitat effects were further quantified: (1) d13C values of endobenthic Globobulimina affinis, Fursenkoina mexicana, and Bulimina mexicana consistently are by between -1.5 and -1.0 per mil VPDB more depleted than d13C values of preferentially epibenthic Fontbotia wuellerstorfi, Cibicidoides pachyderma, and Lobatula lobatula. (2) In contrast to the Antarctic Polar Front region, at all stations except one on the African continental slope Fontbotia wuellerstorfi records bottom water d13CDIC values without significant offset, whereas L. lobatula and C. pachyderma values deviate from bottom water values by about -0.4 per mil and -0.6 per mil, respectively. This adds to the growing amount of data on contrasting cibicid d13C values which on the one hand support the original 1:1-calibration of F. wuellerstorfi and bottom water d13CDIC, and on the other hand document severe depletions of taxonomically close relatives such as L. lobatula and C. pachyderma. At one station close to Bouvet Island at the western rim of Agulhas Basin, we interpret the offset of -1.5 per mil between bottom water d13CDIC and d13C values of infaunal living Bulimina aculeata in contrast to about -0.6 +/- 0.1 per mil measured at eight stations close-by, as a direct reflection of locally increased organic matter fluxes and sedimentation rates. Alternatively, we speculate that methane locally released from gas vents and related to hydrothermal venting at the mid-ocean ridge might have caused this strong depletion of 13C in the benthic foraminiferal carbon isotopic composition. Along the African continental margin, offsets between deep infaunal Globobulimina affinis and epibenthic Fontbotia wuellerstorfi as well as between shallow infaunal Uvigerina peregrina and F. wuellerstorfi, d13C values tend to increase with generally increasing organic matter decomposition rates. Although clearly more data are needed, these offsets between species might be used for quantification of biogeochemical paleogradients within the sediment and thus paleocarbon flux estimates. Furthermore, our data suggest that in high-productivity areas where sedimentary carbonate contents are lower than 15 weight %, epibenthic and endobenthic foraminiferal d13C values are strongly influenced by 13C enrichment probably due to carbonate-ion undersaturation, whereas above this sedimentary carbonate threshold endobenthic d13C values reflect depleted pore water d13CDIC values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of temperature and food availability on feeding and egg production of the Arctic copepod Calanus hyperboreus were investigated in Disko Bay, western Greenland, from winter to spring 2009. The abundance of females in the near bottom layer and the egg production of C. hyperboreus prior to the spring bloom document that reproduction relies on lipid stores. The maximum in situ egg production (± SE) of 54 ± 8 eggs female/d was recorded in mid-February at chlorophyll a concentrations below 0.1 µg/l, whereas no egg production was observed in mid-April when the spring bloom developed. After reproduction, the females migrated to the surface layer to exploit the bloom and refill their lipid stores. In 2 laboratory experiments, initiated before and during the spring bloom, mature females were kept with and without food at 5 different temperatures ranging from 0 to 10°C and the fecal pellet and egg production were monitored. Food had a clear effect on fecal pellet production but no effect on egg production, while temperature did not have an effect on egg or fecal pellet production in any of the experiments. Analyses of carbon and lipid content of the females before and after the experiments did not reflect any effect of food or temperature in the pre-bloom experiment, whereas in the bloom experiment a clear positive effect of food was detected in female biochemical profiles. The lack of a temperature response suggests a future warmer ocean could be unfavorable for C. hyperboreus compared to smaller Calanus spp. which are reported to exploit minor temperature elevations for increased egg production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change is expected to bring about alterations in the marine physical and chemical environment that will induce changes in the concentration of dissolved CO2 and in nutrient availability. These in turn are expected to affect the physiological performance of phytoplankton. In order to learn how phytoplankton respond to the predicted scenario of increased CO2 and decreased nitrogen in the surface mixed layer, we investigated the diatom Phaeodactylum tricornutum as a model organism. The cells were cultured in both low CO2 (390 µatm) and high CO2 (1000 µatm) conditions at limiting (10 µmol/L) or enriched (110 µmol/L) nitrate concentrations. Our study shows that nitrogen limitation resulted in significant decreases in cell size, pigmentation, growth rate and effective quantum yield of Phaeodactylum tricornutum, but these parameters were not affected by enhanced dissolved CO2 and lowered pH. However, increased CO2 concentration induced higher rETRmax and higher dark respiration rates and decreased the CO2 or dissolved inorganic carbon (DIC) affinity for electron transfer (shown by higher values for K1/2 DIC or K1/2 CO2). Furthermore, the elemental stoichiometry (carbon to nitrogen ratio) was raised under high CO2 conditions in both nitrogen limited and nitrogen replete conditions, with the ratio in the high CO2 and low nitrate grown cells being higher by 45% compared to that in the low CO2 and nitrate replete grown ones. Our results suggest that while nitrogen limitation had a greater effect than ocean acidification, the combined effects of both factors could act synergistically to affect marine diatoms and related biogeochemical cycles in future oceans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To project the future development of the soil organic carbon (SOC) storage in permafrost environments, the spatial and vertical distribution of key soil properties and their landscape controls needs to be understood. This article reports findings from the Arctic Lena River Delta where we sampled 50 soil pedons. These were classified according to the U.S.D.A. Soil Taxonomy and fall mostly into the Gelisol soil order used for permafrost-affected soils. Soil profiles have been sampled for the active layer (mean depth 58±10 cm) and the upper permafrost to one meter depth. We analyze SOC stocks and key soil properties, i.e. C%, N%, C/N, bulk density, visible ice and water content. These are compared for different landscape groupings of pedons according to geomorphology, soil and land cover and for different vertical depth increments. High vertical resolution plots are used to understand soil development. These show that SOC storage can be highly variable with depth. We recommend the treatment of permafrost-affected soils according to subdivisions into: the surface organic layer, mineral subsoil in the active layer, organic enriched cryoturbated or buried horizons and the mineral subsoil in the permafrost. The major geomorphological units of a subregion of the Lena River Delta were mapped with a land form classification using a data-fusion approach of optical satellite imagery and digital elevation data to upscale SOC storage. Landscape mean SOC storage is estimated to 19.2±2.0 kg C/m**2. Our results show that the geomorphological setting explains more soil variability than soil taxonomy classes or vegetation cover. The soils from the oldest, Pleistocene aged, unit of the delta store the highest amount of SOC per m**2 followed by the Holocene river terrace. The Pleistocene terrace affected by thermal-degradation, the recent floodplain and bare alluvial sediments store considerably less SOC in descending order.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uncertainty currently exists about the removal of carbon (C) and phosphorus (P) from the oceanic reservoir, especially in low oxygen settings. In this paper, the cycling of C and P is examined in sediments from the anoxic Saanich Inlet, cored by Ocean Drilling Program (ODP) Leg 169S in 1996 at two sites. Although Corg/Porg ratios are high and increase with depth in the Saanich Inlet, this effect is due largely to a remobilization of P from an organic matter sink to an authigenic sink. Reducible sedimentary components act as temporary shuttles in this process even in this anoxic setting, with the ultimate burial sink for the remobilized P being carbonate fluorapatite. The effective Corg/Preactive molar ratio appears to be about 150-200, indicating some preferential loss of P compared to C during organic matter degradation, but not approaching previously reported values of over 3000 in black shales. Reactive P accumulation rates in this basin range from 10,000-60,000 µmol/cm**2/kyr, greatly exceeding the range of 500-8000 µmol/cm**2/kyr found in most continental-margin settings, including regions of modern phosphogenesis. The initiation of marine sedimentation in the Saanich Inlet occurred after deglaciation, and the high rates of P burial seen here may provide an end-member example of the effects of sea level and margin sedimentation on the distribution of P within the marine P cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of ocean acidification on the life-cycle stages of the coccolithophore Emiliania huxleyi and their by light were examined. Calcifying diploid and noncalcifying haploid cells (Roscoff culture collection 1216 and 1217) were acclimated to present-day and elevated CO2 partial pressures (PCO2; 38.5 vs. 101.3 Pa, ., 380 vs. 1000 matm) under low and high light (50 vs. 300 mmol photons m-2 s-1). Growth rates as well as quotas and production rates of C and N were measured. Sources of inorganic C for biomass buildup were using a 14C disequilibrium assay. Photosynthetic O2 evolution was measured as a function of dissolved inorganic C and light by means of membrane-inlet mass spectrometry. The diploid stage responded to elevated PCO2 by shunting resources from the production of particulate inorganic C toward organic C yet keeping the production of total particulate C constant. As the effect of ocean acidification was stronger under low light, the diploid stage might be less affected by increased acidity when energy availability is high. The haploid stage maintained elemental composition and production rates under elevated PCO2. Although both life-cycle stages involve different ways of dealing with elevated PCO2, the responses were generally modulated by energy availability, being typically most pronounced under low light. Additionally, PCO2 responses resembled those induced by high irradiances, indicating that ocean acidification affects the interplay between energy-generating processes (photosynthetic light reactions) and processes competing for energy (biomass buildup and calcification). A conceptual model is put forward explaining why the magnitude of single responses is determined by energy availability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Excess Thorium-230 (230Thxs) as a constant flux tracer is an essential tool for paleoceanographic studies, but its limitations for flux normalization are still a matter of debate. In regions of rapid sediment accumulation, it has been an open question if 230Thxs-normalized fluxes are biased by particle sorting effects during sediment redistribution. In order to study the sorting effect of sediment transport on 230Thxs, we analyzed the specific activity of 230Thxs in different particle size classes of carbonate-rich sediments from the South East Atlantic, and of opal-rich sediments from the Atlantic sector of the Southern Ocean. At both sites, we compare the 230Thxs distribution in neighboring high vs. low accumulation settings. Two grain-size fractionation methods are explored. We find that the 230Thxs distribution is strongly grain size dependent, and 50-90% of the total 230Thxs inventory is concentrated in fine material smaller than 10 µm, which is preferentially deposited at the high accumulation sites. This leads to an overestimation of the focusing factor Psi, and consequently to an underestimation of the vertical flux rate at such sites. The distribution of authigenic uranium indicates that fine organic-rich material has also been re-deposited from lateral sources. If the particle sorting effect is considered in the flux calculations, it reduces the estimated extent of sediment focusing. In order to assess the maximum effect of particle sorting on Psi, we present an extreme scenario, in which we assume a lateral sediment supply of only fine material (< 10 µm). In this case, the focusing factor of the opal-rich core would be reduced from Psi = 5.9 to Psi = 3.2. In a more likely scenario, allowing silt-sized material to be transported, Psi is reduced from 5.9 to 5.0 if particle sorting is taken into consideration. The bias introduced by particle sorting is most important for strongly focused sediments. Comparing 230Thxs-normalized mass fluxes biased by sorting effects with uncorrected mass fluxes, we suggest that 230Thxs-normalization is still a valid tool to correct for lateral sediment redistribution. However, differences in focusing factors between core locations have to be evaluated carefully, taking the grain size distributions into consideration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We reviewed the paleoceanographic application of the carbon isotope composition of planktic foraminifera. Major controls on the distribution of d13C of dissolved CO2 (d13CSCO2) in the modern ocean are photosynthesis-respiration cycle, isotopic fractionation during air-sea exchange, and circulation. The carbon isotope composition of surface waters is not recorded without perturbations by planktic foraminifera. Besides d13CSCO2 of the surrounding seawater, the d13C composition of planktic foraminifera is affected by vital effects, the water depth of calcification and postdepositional dissolution. We compared several high-resolution (>10cm/ka) carbon isotope records from the Southern Ocean, the Benguela upwelling system, and the tropical Atlantic. In the Southern Ocean, carbon isotope values are about 1.2 per mil lower during the LGM and up to 1.7 per mil lower during the last deglaciation, when compared to the Holocene. These depletions might be explained with a combination of a subsurface nutrient enrichment and reduced air-sea exchange due to an increased stratification of surface waters. In the Benguela Upwelling system, waters originating in the south are upwelled. While the deglacial minimum is transferred and recorded in its full extent in the d13C record of Globigerina bulloides, glacial values show only little changes. This might suggest, that the lower glacial d13C values of high-latitude surface waters are not upwelled off Namibia, or that G. bulloides records post-upwelling conditions, when increased seasonal production has already increased surface-water d13C. Synchronous to the d13C depletions in high latitudes, low d13C values were recorded in Globigerinoides sacculifer during the LGM and during the last deglaciation in the nutrient-depleted western equatorial Atlantic. Hence, part of the glacial-interglacial variability presumably transferred from high to low latitudes seems to be related to changes in thermodynamic fractionation. The variability in d13C is lowest in the northernmost core M35003-4 from the eastern Caribbean, implying that the Antarctic Intermediate Water might have acted as a conduit to transfer the deglacial minimum to tropical surface waters.