980 resultados para Hydrogen Quantum Electron Bohr
Resumo:
Chelicerae de Amblyomma cajennense foram examinados em microscopia de varredura. Esta técnica mostrou detalhes não evidenciáveis ao poder de resolução do microscópio ótico.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biochemistry
Resumo:
Dissertation to obtain a Master degree in Biotechnology
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Física
Resumo:
Hydrogen sulphide is one of the most toxic and corrosive compound present in swine-derived biogas streams.In this study, afield scale biotrickling filter for the removal of hydrogen sulfide was investigated.A Biofilter packed with supporting biofilm materials was fed continuously with a proprietary nutrient solution and operatedfor over 73days. The system has been operating with a H2S inlet concentrations ranging from 1,000to 3,000 ppm.Significant removal efficiencies >95% was demonstrated. pH of the stock feeding solution decreased from 6.2 to as low as 3.5within couple days.The resulting drop in pH provided circumstantial evidence to support biological H2 Soxidation to sulphuric acid by sulfide-oxidizers. Sulfur precipitation was also observed to occur. The results suggested that H2S removal from biogas stream can be efficiently achieved using portable, low cost and maintenance free biotrickling filters.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biochemistry
Resumo:
The continued economic and population development puts additional pressure on the already scarce energetic sources. Thus there is a growing urge to adopt a sustainable plan able to meet the present and future energetic demands. Since the last two decades, solar trough technology has been demonstrating to be a reliable alternative to fossil fuels. Currently, the trough industry seeks, by optimizing energy conversion, to drive the cost of electricity down and therefore to place itself as main player in the next energetic age. One of the issues that lately have gained considerable relevance came from the observation of significant heat losses in a large number of receiver modules. These heat losses were attributed to slow permeation of traces of hydrogen gas through the steel tube wall into the vacuum annulus. The presence of hydrogen gas in the absorber tube results from the decomposition of heat transfer fluid due to the long-term exposure to 400°C. The permeated hydrogen acts as heat conduction mean leading to a decrease in the receivers performance and thus its lifetime. In order to prevent hydrogen accumulation, it has been common practice to incorporate hydrogen getters in the vacuum annulus of the receivers. Nevertheless these materials are not only expensive but their gas absorbing capacity can be insufficient to assure the required level of vacuum for the receivers to function. In this work the building of a permeation measurement device, vulnerabilities detected in the construction process and its overcome are described. Furthermore an experimental procedure was optimized and the obtained permeability results, of different samples were evaluated. The data was compared to measurements performed by an external entity. The reliability of the comparative data was also addressed. In the end conclusions on the permeability results for the different samples characteristics, feasibility of the measurement device are drawn and recommendations on future line of work were made.
Resumo:
INTRODUCTION: The capacity to overcome the oxidative stress imposed by phagocytes seems to be critical for Candida species to cause invasive candidiasis. METHODS: To better characterize the oxidative stress response (OSR) of 8 clinically relevant Candida sp., glutathione, a vital component of the intracellular redox balance, was measured using the 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB)-glutathione disulfide (GSSG) reductase reconversion method; the total antioxidant capacity (TAC) was measured using a modified method based on the decolorization of the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic) acid radical cation (ABTS*+). Both methods were used with cellular Candida sp. extracts treated or not with hydrogen peroxide (0.5 mM). RESULTS: Oxidative stress induced by hydrogen peroxide clearly reduced intracellular glutathione levels. This depletion was stronger in Candida albicans and the levels of glutathione in untreated cells were also higher in this species. The TAC demonstrated intra-specific variation. CONCLUSIONS: Glutathione levels did not correlate with the measured TAC values, despite this being the most important non-enzymatic intracellular antioxidant molecule. The results indicate that the isolated measurement of TAC does not give a clear picture of the ability of a given Candida sp. to respond to oxidative stress.
Resumo:
The interaction of ionising radiation with living tissues may direct or indirectly generate several secondary species with relevant genotoxic potential. Due to recent findings that electrons with energies below the ionisation threshold can effectively damage DNA, radiation-induced damage to biological systems has increasingly come under scrutiny. The exact physico-chemical processes that occur in the first stages of electron induced damage remain to be explained. However, it is also known that free electrons have a short lifetime in the physiological medium. Hence, electron transfer processes studies represent an alternative approach through which the role of "bound" electrons as a source of damage to biological tissues can be further explored. The thesis work consists of studying dissociative electron attachment (DEA) and electron transfer to taurine and thiaproline. DEA measurements were executed in Siedlce University with Prof. Janina Kopyra under COST action MP1002 (Nanoscale insights in ion beam cancer therapy). The electron transfer experiments were conducted in a crossed atom(potassium)-molecule beam arrangement. In these studies the anionic fragmentation patterns were obtained. The results of both mechanisms are shown to be significantly different, unveiling that the damaging potential of secondary electrons can be underestimated. In addition, sulphur atoms appear to strongly influence the dissociation process, demonstrating that certain reactions can be controlled by substitution of sulphur at specific molecular sites.
Resumo:
Microbial electrolysis cells (MECs) are an innovative and emerging technique based on the use of solid-state electrodes to stimulate microbial metabolism for wastewater treatment and simultaneous production of value-added compounds (such as methane). This research studied the performance of a two-chamber MEC in terms of organic matter oxidation (at the anode) and methane production (at the cathode). MEC‟s anode had been previously inoculated with an activated sludge, whereas the cathode chamber inoculum was an anaerobic sludge (containing methanogenic microorganisms). During the experimentation, the bioanode was continuously fed with synthetic solutions in anaerobic basal medium, at an organic load rate (OLR) of around 1 g L-1 d-1, referred to the chemical oxygen demand (COD). At the beginning (Run I), the feeding solution contained acetate and subsequently (Run II) it was replaced with a more complex solution containing soluble organic compounds other than acetate. For both conditions, the anode potential was controlled at -0.1 V vs. standard hydrogen electrode, by means of a potentiostat. During Run I, over 80% of the influent acetate was anaerobically oxidized at the anode, and the resulting electric current was recovered as methane at the cathode (with a cathode capture efficiency, CCE, accounting around 115 %). The average energy efficiency of the system (i.e., the energy captured into methane relative to the electrical energy input) under these conditions was over 170%. However, reactor‟s performance decreased over time during this run. Throughout Run II, a substrate oxidation over 60% (on COD basis) was observed. The electric current produced (57% of coulombic efficiency) was also recovered as methane, with a CCE of 90%. For this run the MEC‟s average energy efficiency accounted for almost 170 %. During all the experimentation, a very low biomass growth was observed at the anode whereas ammonium was transferred through the cationic membrane and concentrated at the cathode. Tracer experiments and scanning electron microscopy analyses were also carried out to gain a deeper insight into the reactor performance and also to investigate the possible reasons for partial loss of performance. In conclusion, this research suggests the great potential of MEC to successfully treat low-strength wastewaters, with high energy efficiency and very low sludge production.
Resumo:
The thrust towards energy conservation and reduced environmental footprint has fueled intensive research for alternative low cost sources of renewable energy. Organic photovoltaic cells (OPVs), with their low fabrication costs, easy processing and flexibility, represent a possible viable alternative. Perylene diimides (PDIs) are promising electron-acceptor candidates for bulk heterojunction (BHJ) OPVs, as they combine higher absorption and stability with tunable material properties, such as solubility and position of the lowest unoccupied molecular orbital (LUMO) level. A prerequisite for trap free electron transport is for the LUMO to be located at a level deeper than 3.7 eV since electron trapping in organic semiconductors is universal and dominated by a trap level located at 3.6 eV. Although the mostly used fullerene acceptors in polymer:fullerene solar cells feature trap-free electron transport, low optical absorption of fullerene derivatives limits maximum attainable efficiency. In this thesis, we try to get a better understanding of the electronic properties of PDIs, with a focus on charge carrier transport characteristics and the effect of different processing conditions such as annealing temperature and top contact (cathode) material. We report on a commercially available PDI and three PDI derivatives as acceptor materials, and its blends with MEH-PPV (Poly[2-methoxy 5-(2-ethylhexyloxy)-1,4-phenylenevinylene]) and P3HT (Poly(3-hexylthiophene-2,5-diyl)) donor materials in single carrier devices (electron-only and hole-only) and in solar cells. Space-charge limited current measurements and modelling of temperature dependent J-V characteristics confirmed that the electron transport is essentially trap-free in such materials. Different blend ratios of P3HT:PDI-1 (1:1) and (1:3) show increase in the device performance with increasing PDI-1 ratio. Furthermore, thermal annealing of the devices have a significant effect in the solar cells that decreases open-circuit voltage (Voc) and fill factor FF, but increases short-circuit current (Jsc) and overall device performance. Morphological studies show that over-aggregation in traditional donor:PDI blend systems is still a big problem, which hinders charge carrier transport and performance in solar cells.
Resumo:
This paper presents measurements from the ATLAS experiment of the forward-backward asymmetry in the reaction pp→Z/γ∗→l+l−, with l being electrons or muons, and the extraction of the effective weak mixing angle. The results are based on the full set of data collected in 2011 in pp collisions at the LHC at s√ = 7 TeV, corresponding to an integrated luminosity of 4.8 fb−1. The measured asymmetry values are found to be in agreement with the corresponding Standard Model predictions. The combination of the muon and electron channels yields a value of the effective weak mixing angle of 0.2308±0.0005(stat.)±0.0006(syst.)±0.0009(PDF), where the first uncertainty corresponds to data statistics, the second to systematic effects and the third to knowledge of the parton density functions. This result agrees with the current world average from the Particle Data Group fit.
Resumo:
Recently, CdTe semiconductor quantum dots (QDs) have attracted great interest due to their unique properties [1]. Their dispersion into polymeric matrices would be very for several optoelectronics applications. Despite its importance, there has been relatively little work done on charge transport in the QD polymeric films [2], which is mainly affected by their structural and morphological properties. In the present work, polymer-quantum dot nanocomposites films based on optically transparent polymers in the visible spectral range and CdTe QDs with controlled particle size and emission wavelength, were prepared via solvent casting. Photoluminescent (PL) measurements indicate different emission intensity of the nanocomposites. A blue shift of the emission peak compared to that of QDs in solution occurred, which is attributed to the QDs environment changes. The morphological and structural properties of the CdTe nanocomposites were evaluated. Since better QDs dispersion was achieved, PMMA seemed to be the most promising matrix. Electrical properties measurements indicate an ohmic behavior.
Resumo:
During last years, photophysical properties of complexes of semiconductor quantum dots (QDs) with organic dyes have attracted increasing interest. The development of different assemblies based on QDs and organic dyes allows to increase the range of QDs applications, which include imaging, biological sensing and electronic devices.1 Some studies demonstrate energy transfer between QDs and organic dye in assemblies.2 However, for electronic devices purposes, a polymeric matrix is required to enhance QDs photostability. Thus, in order to attach the QDs to the polymer surface it is necessary to chemically modify the polymer to induce electronic charges and stabilize the QDs in the polymer. The present work aims to investigate the design of assemblies based on polymer-coated QDs and an integrated acceptor organic dye. Polymethylmethacrylate (PMMA) and polycarbonate (PC) were used as polymeric matrices, and nile red as acceptor. Additionally, a PMMA matrix modified with 2-mercaptoethylamine is used to improve the attachment between both the donor (QDs) and the acceptor (nile red), as well as to induce a covalent bond between the modified PMMA and the QDs. An enhancement of the energy transfer efficiency by using the modified PMMA is expected and the resulting assembly can be applied for energy harvesting.