981 resultados para Hydraulic lime mortars
Resumo:
Exchangeable Al has been used as a criterion for the calculation of lime requirement in several Brazilian States. However, the laboratory method with extraction by a 1 mol L-1 KCl solution followed by indirect alkaline titration is not accurate for some Brazilian soils, mainly in the case of soils with high organic matter content. The objective of this study was therefore to evaluate the stoichiometry of H+/Al3+ in KCl soil extracts. The results suggested that organically complexed Al is the main contributor to exchangeable acidity in soils enriched with organic matter. Liming recommendations for organic soils based exclusively on exchangeable Al determined by the NaOH titration method should therefore be revised.
Resumo:
Soil water properties are related to crop growth and environmental aspects and are influenced by the degree of soil compaction. The objective of this study was to determine the water infiltration and hydraulic conductivity of saturated soil under field conditions in terms of the compaction degree of two Oxisols under a no-tillage (NT). Two commercial fields were studied in the state of Rio Grande do Sul, Brazil: one a Haplortox after 14 years under NT; the other a Hapludox after seven years under NT. Maps (50 x 30 m) of the levels of mechanical penetration resistance (PR) were drawn based on the kriging method, differentiating three compaction degrees (CD): high, intermediate and low. In each CD area, the infiltration rate (initial and steady-state) and cumulative water infiltration were measured using concentric rings, with six replications, and the saturated hydraulic conductivity (K(θs)) was determined using the Guelph permeameter. Statistical evaluation was performed based on a randomized design, using the least significant difference (LSD) test and regression analysis. The steady-state infiltration rate was not influenced by the compaction degree, with mean values of 3 and 0.39 cm h-1 in the Haplortox and the Hapludox, respectively. In the Haplortox, saturated soil hydraulic conductivity was 26.76 cm h-1 at a low CD and 9.18 cm h-1 at a high CD, whereas in the Hapludox, this value was 5.16 cm h-1 and 1.19 cm h-1 for the low and high CD, respectively. The compaction degree did not affect the initial and steady-state water infiltration rate, nor the cumulative water infiltration for either soil type, although the values were higher for the Haplortox than the Hapludox.
Resumo:
Soil properties are closely related with crop production and spite of the measures implemented, spatial variation has been repeatedly observed and described. Identifying and describing spatial variations of soil properties and their effects on crop yield can be a powerful decision-making tool in specific land management systems. The objective of this research was to characterize the spatial and temporal variations in crop yield and chemical and physical properties of a Rhodic Hapludox soil under no-tillage. The studied area of 3.42 ha had been cultivated since 1985 under no-tillage crop rotation in summer and winter. Yield and soil property were sampled in a regular 10 x 10 m grid, with 302 sample points. Yields of several crops were analyzed (soybean, maize, triticale, hyacinth bean and castor bean) as well as soil chemical (pH, Soil Organic Matter (SOM), P, Ca2+, Mg2+, H + Al, B, Fe, Mn, Zn, CEC, sum of bases (SB), and base saturation (V %)) and soil physical properties (saturated hydraulic conductivity, texture, density, total porosity, and mechanical penetration resistance). Data were analyzed using geostatistical analysis procedures and maps based on interpolation by kriging. Great variation in crop yields was observed in the years evaluated. The yield values in the Northern region of the study area were high in some years. Crop yields and some physical and soil chemical properties were spatially correlated.
Resumo:
The estimation of non available soil variables through the knowledge of other related measured variables can be achieved through pedotransfer functions (PTF) mainly saving time and reducing cost. Great differences among soils, however, can yield non desirable results when applying this method. This study discusses the application of developed PTFs by several authors using a variety of soils of different characteristics, to evaluate soil water contents of two Brazilian lowland soils. Comparisons are made between PTF evaluated data and field measured data, using statistical and geostatistical tools, like mean error, root mean square error, semivariogram, cross-validation, and regression coefficient. The eight tested PTFs to evaluate gravimetric soil water contents (Ug) at the tensions of 33 kPa and 1,500 kPa presented a tendency to overestimate Ug 33 kPa and underestimate Ug1,500 kPa. The PTFs were ranked according to their performance and also with respect to their potential in describing the structure of the spatial variability of the set of measured values. Although none of the PTFs have changed the distribution pattern of the data, all resulted in mean and variance statistically different from those observed for all measured values. The PTFs that presented the best predictive values of Ug33 kPa and Ug1,500 kPa were not the same that had the best performance to reproduce the structure of spatial variability of these variables.
Resumo:
Soil porosity, especially pore size distribution, is an important controlling factor for soil infiltration, hydraulic conductivity, and water retention. This study aimed to verify the effect of secondary-treated domestic wastewater (STW) on the porosity of a sandy loam Oxisol in the city of Lins, state of São Paulo, Brazil. The two-year experiment was divided into three plots: soil cultivated with corn and sunflower and irrigated with STW, soil cultivated and irrigated with sodic groundwater, and non-irrigated and non-cultivated soil (control). At the end of the experiment, undisturbed core samples were sampled from 0 to 2.0 m (8 depths). The water retention curves were obtained by tension plates and Richard's pressure plate apparatus, and the pore size distribution inferred from the retention curves. It was found that irrigation with treated wastewater and treated groundwater led to a decrease in microporosity (V MI), defined as the pore class ranging from 0.2 to 50 μm diameter. On the other hand, a significant increase in cryptoporosity (V CRI) (< 0.2 μm) was identified throughout the soil profile. The presence of Na+ in both waters confirmed the role of this ion on pore size distribution and soil moisture (higher water retention).
Resumo:
Laser diffraction (LD) provides detailed analysis of particle size distribution. Its application to testing the stability of soil aggregates can assist studies on the aggregation of soils with contrasting electrochemical properties. The objectives of the present work were: (a) to propose a protocol for using LD to study soil aggregation, (b) to study the aggregation of an Acrisol under the influence of different doses and forms of lime. Samples were collected in 2005 from a Brazilian Acrisol that in 1994 had received 0.0; 2.0; 8.5 and 17.0 Mg ha-1 of lime, left on the soil surface or incorporated. Aggregates from 4.76 to 8.00 mm diameters were studied using the traditional method proposed by Kemper & Chepil (1965), with wet sieving, while aggregates from 1.00 to 2.00 mm were studied using a CILAS® laser diffractometer that distinguishes particles ranging from 0.04 to 2,500.00 μm. LD readings were made after six consecutive pre-treatments, using agitation times, a chemical dispersion agent and ultrasound. Mean Weighted Diameter (MWD) and the Aggregate Stability Index (ASI) calculated, using the traditional method does not discriminate the treatments. However, LD is able to produce detailed data on soil aggregation, resulting in indexes of stability of aggregates that are linearly related to the doses of lime applied (MWD: R² = 0.986 and ASI: R² = 0.876). It may be concluded that electrochemical changes in the Brazilian Acrisol resulting from incorporated lime affect the stability of aggregates, increasing stability with increased doses of lime.
Resumo:
The increased availability of soil water is important for the management of non-irrigated orange orchards. The objective of this study was to evaluate the availability of soil water in a Haplorthox (Rhodic Ferralsol) under different tillage systems used for orchard plantation, mulch management and rootstocks in a "Pêra" orange orchard in northwest Paraná, Brazil. An experiment in a split-split-plot design was established in 2002, in an area cultivated with Brachiaria brizantha grass in which three tillage systems (no tillage, conventional tillage and strip-tillage) were used for orchard plantation. This grass was mowed twice a year between the rows, representing two mulch managements in the split plots (no mulching and mulching in the plant rows). The split-split-plots were represented by two rootstocks ("Rangpur" lime and "Cleopatra" mandarin). The soil water content in the plant rows was evaluated in the 0-20 cm layer in 2007 and at 0-20 and 20-40 cm in 2008-2009. The effect of soil tillage systems prior to implantation of orange orchards on soil water availability was less pronounced than mulching and the rootstocks. The soil water availability was lower when "Pêra" orange trees were grafted on "Cleopatra" mandarin than on "Rangpur" lime rootstocks. Mulching had a positive influence on soil water availability in the sandy surface layer (0-20 cm) and sandy clay loam subsurface (20-40 cm) of the soil in the spring. The production of B. brizantha between the rows and residue disposal in the plant rows as mulch increased water availability to the "Pêra" orange trees.
Resumo:
In many practical applications the state of field soils is monitored by recording the evolution of temperature and soil moisture at discrete depths. We theoretically investigate the systematic errors that arise when mass and energy balances are computed directly from these measurements. We show that, even with no measurement or model errors, large residuals might result when finite difference approximations are used to compute fluxes and storage term. To calculate the limits set by the use of spatially discrete measurements on the accuracy of balance closure, we derive an analytical solution to estimate the residual on the basis of the two key parameters: the penetration depth and the distance between the measurements. When the thickness of the control layer for which the balance is computed is comparable to the penetration depth of the forcing (which depends on the thermal diffusivity and on the forcing period) large residuals arise. The residual is also very sensitive to the distance between the measurements, which requires accurately controlling the position of the sensors in field experiments. We also demonstrate that, for the same experimental setup, mass residuals are sensitively larger than the energy residuals due to the nonlinearity of the moisture transport equation. Our analysis suggests that a careful assessment of the systematic mass error introduced by the use of spatially discrete data is required before using fluxes and residuals computed directly from field measurements.
Resumo:
A avaliação da capacidade de raízes de plantas em extrair água do solo é de grande importância na modelagem da taxa de transpiração e, para entender o crescimento e rendimento vegetal e o balanço de água e de solutos no solo. Para testar um modelo de extração radicular macroscópico baseado no processo em escala microscópica, descreveram-se os resultados de um experimento com plantas cujo sistema radicular foi dividido entre camadas de solo com propriedades hidráulicas contrastantes. Um experimento de lisímetro dividido com plantas de sorgo foi realizado em Piracicaba-SP. Quatro lisímetros com dois compartimentos separados fisicamente (split-pot) foram construídos e preenchidos com material de dois tipos de solo de diferentes classes texturais (um solo de textura média - AR e outro de textura argilosa - AG). Durante um mês e meio foi imposto um regime hídrico, alternando a irrigação entre os compartimentos. O teor de água nos compartimentos dos lisímetros foi monitorado com TDR e tensiômetros. O material dos dois solos foi analisado conforme método-padrão quanto às suas propriedades de retenção e condução da água. A densidade radicular foi determinada por pesagem no fim do experimento, tendo ficado em torno de duas vezes maior no solo AR do que no AG. Observou-se que a extração de água ocorreu preferencialmente do compartimento do lisímetro com maior potencial de fluxo matricial. Em certas ocasiões houve transferência de água do lado de maior para o de menor potencial de fluxo matricial, com a liberação da água ao solo pelo sistema radicular (hydraulic lift). Para compensar o efeito da heterogeneidade da distribuição radicular e da atividade radicular, incluiu-se, no modelo, um fator empírico f de correção. O modelo testado descreveu bem 80 % das observações com a utilização de valores de f de 0,01506 e 0,003713, para os solos AR e AG, respectivamente. O modelo simulou a liberação de água ao solo mais frequentemente do que ela ocorreu no experimento. Esse fato pode indicar que a resistência interna do sistema radicular, não contabilizada pelo modelo, pode ter papel importante nas relações hídricas na rizosfera.
Resumo:
AMADEUS is a dexterous subsea robot hand incorporating force and slip contact sensing, using fluid filled tentacles for fingers. Hydraulic pressure variations in each of three flexible tubes (bellows) in each finger create a bending moment, and consequent motion or increase in contact force during grasping. Such fingers have inherent passive compliance, no moving parts, and are naturally depth pressure-compensated, making them ideal for reliable use in the deep ocean. In addition to the mechanical design, development of the hand has also considered closed loop finger position and force control, coordinated finger motion for grasping, force and slip sensor development/signal processing, and reactive world modeling/planning for supervisory `blind grasping¿. Initially, the application focus is for marine science tasks, but broader roles in offshore oil and gas, salvage, and military use are foreseen. Phase I of the project is complete, with the construction of a first prototype. Phase I1 is now underway, to deploy the hand from an underwater robot arm, and carry out wet trials with users.
Resumo:
Alfalfa is an important forage crop with high nutritive value, although highly susceptible to soil acidity. Liming is one of the most efficient and prevailing practices to correct soil acidity and improve alfalfa yield. The objective of this study was to evaluate response to liming of alfalfa grown in a greenhouse on a Typic Quartzipsamment soil. The treatments consisted of four lime rates (0, 3.8, 6.6 and 10.3 Mg ha-1) and two cuts. Alfalfa dry matter increased quadratically with increasing lime rates. In general, dry matter yield was maximized by a lime rate of 8.0 Mg ha-1. Except for the control, the dry matter nutrient contents in the treatments were adequate. The positive linear correlation between root and nodule dry matter with lime rates indicated improvement of these plant traits with decreasing soil acidity. The soil acidity indices pH, base saturation, Ca2+ concentration, Mg2+ concentration, and H + Al were relevant factors in the assessment of alfalfa yield. The magnitude of influence of these soil acidity indices on yield as determined by the coefficient of determination (R²) varied and decreased in the order: base saturation, H + Al, pH, Ca and Mg concentrations. Optimum values of selected soil chemical properties were defined for maximum shoot dry matter; these values can serve as a guideline for alfalfa liming to improve the yield of this forage on acid soils.
Resumo:
Irrigation with treated domestic sewage wastewater (TSE) is an agricultural practice to reduce water requirements of agroecossystems and the nutrient load impact on freshwaters, but adverse effects on soil chemical (salinization, sodification, etc.) and soil physical properties (alteration in soil porosity and hydraulic conductivity, etc.) have been reported. This study aimed to define some relationships among these changes in an Oxisol using multivariate analysis. Corn (Zea mays L.) and sunflower (Helianthus annuus L.) were grown for two years, irrigated with TSE. The following soil properties were determined: Ca2+; Mg2+; Na+; K+ and H + Al contents, cationic exchangeable capacity (CEC), sum of bases (SB), base saturation (V), texture (sand, silt and clay), macro-, micro-, and cryptoporosity (V MA, V MI and V CRI), water content at soil saturation (θS) and at field capacity (θFC), residual water content (θR), soil bulk density (d s), water dispersed clay (WDC) and saturated hydraulic conductivity (K SAT). Factor analysis revealed the following six principal factors: Fine Porosity (composed of Na+; K+; WDC, θR, θRFC, and V CRI); Large Porosity (θS, d s, V MA, Vs); Soil CEC (Ca2+; Mg2+; CEC, SB, V); Soil Acidity (H + Al); and Soil Texture (factors 5 and 6). A dual pore structure appears clearly to the factors 1 and 2, with an apparent relationship between fine porosity and the monovalent cations Na+ and K+. The irrigation (with potable sodic tap water or sewage wastewater) only had a significant effect on Fine Porosity and Large Porosity factors, while factors 3 and 4 (Soil CEC and Soil Acidity) were correlated with soil depth. The main conclusion was a shift in pore distribution (large to fine pores) during irrigation with TSE, which induces an increase of water storage and reduces the capacity of drainage of salts.
Resumo:
Nationwide, about five cents of each highway construction dollar is spent on culverts. In Iowa, average annual construction costs on the interstate, primary, and federal-aid secondary systems are about $120,000,000. Assuming the national figure applies to Iowa, about $6,000,000 are spent on culvert construction annually. For each one percent reduction in overall culvert costs, annual construction costs would be reduced by $60,000. One area of potential cost reduction lies in the sizing of the culvert. Determining the flow area and hydraulic capacity is accomplished in the initial design of the culvert. The normal design sequence is accomplished in two parts. The hydrologic portion consists of the determination of a design discharge in cubic feet per second using one of several available methods. This discharge is then used directly in the hydraulic portion of the design to determine the proper type, size, and shape of culvert to be used, based on various site and design restrictions. More refined hydrologic analyses, including rainfall-runoff analysis, flood hydrograph development, and streamflow routing techniques, are not pursued in the existing design procedure used by most county and state highway engineers.
Resumo:
The use of machinery in agricultural and forest management activities frequently increases soil compaction, resulting in greater soil density and microporosity, which in turn reduces hydraulic conductivity and O2 and CO2 diffusion rates, among other negative effects. Thus, soil compaction has the potential to affect soil microbial activity and the processes involved in organic matter decomposition and nutrient cycling. This study was carried out under controlled conditions to evaluate the effect of soil compaction on microbial activity and carbon (C) and nitrogen (N) mineralization. Two Oxisols with different mineralogy were utilized: a clayey oxidic-gibbsitic Typic Acrustox and a clayey kaolinitic Xantic Haplustox (Latossolo Vermelho-Amarelo ácrico - LVA, and Latossolo Amarelo distrófico - LA, respectively, in the Brazil Soil Classification System). Eight treatments (compaction levels) were assessed for each soil type in a complete block design, with six repetitions. The experimental unit consisted of PVC rings (height 6 cm, internal diameter 4.55 cm, volume 97.6 cm³). The PVC rings were filled with enough soil mass to reach a final density of 1.05 and 1.10 kg dm-3, respectively, in the LVA and LA. Then the soil samples were wetted (0.20 kg kg-1 = 80 % of field capacity) and compacted by a hydraulic press at pressures of 0, 60, 120, 240, 360, 540, 720 and 900 kPa. After soil compression the new bulk density was calculated according to the new volume occupied by the soil. Subsequently each PVC ring was placed within a 1 L plastic pot which was then tightly closed. The soils were incubated under aerobic conditions for 35 days and the basal respiration rate (CO2-C production) was estimated in the last two weeks. After the incubation period, the following soil chemical and microbiological properties were detremined: soil microbial biomass C (C MIC), total soil organic C (TOC), total N, and mineral N (NH4+-N and NO3--N). After that, mineral N, organic N and the rate of net N mineralization was calculated. Soil compaction increased NH4+-N and net N mineralization in both, LVA and LA, and NO3--N in the LVA; diminished the rate of TOC loss in both soils and the concentration of NO3--N in the LA and CO2-C in the LVA. It also decreased the C MIC at higher compaction levels in the LA. Thus, soil compaction decreases the TOC turnover probably due to increased physical protection of soil organic matter and lower aerobic microbial activity. Therefore, it is possible to conclude that under controlled conditions, the oxidic-gibbsitic Oxisol (LVA) was more susceptible to the effects of high compaction than the kaolinitic (LA) as far as organic matter cycling is concerned; and compaction pressures above 540 kPa reduced the total and organic nitrogen in the kaolinitic soil (LA), which was attributed to gaseous N losses.
Resumo:
This manual summarizes the roadside tree and brush control methods used by all of Iowa's 99 counties. It is based on interviews conducted in Spring 2002 with county engineers, roadside managers and others. The target audience of this manual is the novice county engineer or roadside manager. Iowa law is nearly silent on roadside tree and brush control, so individual counties have been left to decide on the level of control they want to achieve and maintain. Different solutions have been developed but the goal of every county remains the same: to provide safe roads for the traveling public. Counties in eastern and southern Iowa appear to face the greatest brush control challenge. Most control efforts can be divided into two categories: mechanical and chemical. Mechanical control includes cutting tools and supporting equipment. A chain saw is the most widely used cutting tool. Tractor mounted boom mowers and brush cutters are used to prune miles of brush but have significant safety and aesthetic limitations and boom mowers are easily broken by inexperienced operators. The advent of tree shears and hydraulic thumbs offer unprecedented versatility. Bulldozers are often considered a method of last resort since they reduce large areas to bare ground. Any chipper that violently grabs brush should not be used. Chemical control is the application of herbicide to different parts of a plant: foliar spray is applied to leaves; basal bark spray is applied to the tree trunk; a cut stump treatment is applied to the cambium ring of a cut surface. There is reluctance by many to apply herbicide into the air due to drift concerns. One-third of Iowa counties do not use foliar spray. By contrast, several accepted control methods are directed toward the ground. Freshly cut stumps should be treated to prevent resprouting. Basal bark spray is highly effective in sensitive areas such as near houses. Interest in chemical control is slowly increasing as herbicides and application methods are refined. Fall burning, a third, distinctly separate technique is underused as a brush control method and can be effective if timed correctly. In all, control methods tend to reflect agricultural patterns in a county. The use of chain saws and foliar sprays tends to increase in counties where row crops predominate, and boom mowing tends to increase in counties where grassland predominates. For counties with light to moderate roadside brush, rotational maintenance is the key to effective control. The most comprehensive approach to control is to implement an integrated roadside vegetation management (IRVM) program. An IRVM program is usually directed by a Roadside Manager whose duties may be shared with another position. Funding for control programs comes from the Rural Services Basic portion of a county's budget. The average annual county brush control budget is about $76,000. That figure is thought not to include shared expenses such as fuel and buildings. Start up costs for an IRVM program are less if an existing control program is converted. In addition, IRVM budgets from three different northeastern Iowa counties are offered for comparison in this manual. The manual also includes a chapter on temporary traffic control in rural work zones, a summary of the Iowa Code as it relates to brush control, and rules on avoiding seasonal disturbance of the endangered Indiana bat. Appendices summarize survey and forest cover data, an equipment inventory, sample forms for record keeping, a sample brush control policy, a few legal opinions, a literature search, and a glossary.