987 resultados para Hybrid composite


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a new protocol for the synthesis of M@rGO (M = Au, Pt, Pd, Ag and rGO = reduced graphene oxide) hybrid nanostructures at room temperature in Zn-acid medium. The roles of Zn-acid are to reduce the GO by generated hydrogen and the deposition of metal nanoparticles on rGO by galvanic replacement reaction between Zn and Mn+.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method of modeling partial delamination in composite beams is proposed and implemented using the finite element method. Homogenized cross-sectional stiffness of the delaminated beam is obtained by the proposed analytical technique, including extension-bending, extension-twist and torsion-bending coupling terms, and hence can be used with an existing finite element method. A two noded C1 type Timoshenko beam element with 4 degrees of freedom per node for dynamic analysis of beams is implemented. The results for different delamination scenarios and beams subjected to different boundary conditions are validated with available experimental results in the literature and/or with the 3D finite element simulation using COMSOL. Results of the first torsional mode frequency for the partially delaminated beam are validated with the COMSOL results. The key point of the proposed model is that partial delamination in beams can be analyzed using a beam model, rather than using 3D or plate models. (c) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cu2CoSnS4 (CCTS) quaternary semiconducting nanoparticles with size distribution from 20 nm to 60 nm were synthesized by one-pot low temperature time and surfactant dependent hydrothermal route. Nanoparticles were characterized structurally and optically. Excitation dependent fluorescence exhibited a dynamic stoke shift referring to the Red-Edge-Effect with peak shifting by a greater magnitude (>100 nm) towards red side, in all the samples. Hybrid devices, fabricated from CCTS nanoparticle inorganic counterparts benefitting from the conjugation of organic P3HT polymer matrix, were demonstrated for photodetection under infra-red and A. M 1.5 solar light illuminations. Faster rise and decay constants of 37 ms and 166 ms, with one order photocurrent amplification from 1.6 x 10(-6) A in the dark to 6.55 x 10(-5) A, upon the 18.50 mW cm(-2) IR lamp illumination, make CCTS a potential candidate for photodetector and photovoltaic applications. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver nanoparticles with an average size of 23 nm were chemically synthesized and used to fabricate Zn-Ag composite coatings. The Zn-Ag composite coatings were generated by electrodeposition method using a simple sulfate plating bath dispersed with 0.5, land 1.5 g/l of Ag nanoparticles. Scanning electron microscopy, X-ray diffraction and texture co-efficient calculations revealed that Ag nanoparticles appreciably influenced the morphology, micro-structure and texture of the deposit. It was also noticed that agglomerates of Ag nanopartides, in the case of high bath load conditions, produced defects and dislocations on the deposit surface. Ag nanoparticles altered the corrosion resistance property of Zn-Ag composite coatings as observed from Tafel polarization, electrochemical impedance analysis and an immersion test. Reduction in corrosion rate with increased charge transfer resistance was observed for Zn-Ag composite coatings when compared to a pure Zn coating. However, the particle concentration in the plating bath and their agglomeration state directly influenced the surface morphology and the subsequent corrosion behavior of the deposits. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combining the electronic properties of graphene(1,2) and molybdenum disulphide (MoS2)(3-6) in hybrid heterostructures offers the possibility to create devices with various functionalities. Electronic logic and memory devices have already been constructed from graphene-MoS2 hybrids(7,8), but they do not make use of the photosensitivity of MoS2, which arises from its optical-range bandgap(9). Here, we demonstrate that graphene-on-MoS2 binary heterostructures display remarkable dual optoelectronic functionality, including highly sensitive photodetection and gate-tunable persistent photoconductivity. The responsivity of the hybrids was found to be nearly 1 x 10(10) A W-1 at 130 K and 5 x 10(8) A W-1 at room temperature, making them the most sensitive graphene-based photodetectors. When subjected to time-dependent photoillumination, the hybrids could also function as a rewritable optoelectronic switch or memory, where the persistent state shows almost no relaxation or decay within experimental timescales, indicating near-perfect charge retention. These effects can be quantitatively explained by gate-tunable charge exchange between the graphene and MoS2 layers, and may lead to new graphene-based optoelectronic devices that are naturally scalable for large-area applications at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy harvesting sensor (EHS) nodes provide an attractive and green solution to the problem of limited lifetime of wireless sensor networks (WSNs). Unlike a conventional node that uses a non-rechargeable battery and dies once it runs out of energy, an EHS node can harvest energy from the environment and replenish its rechargeable battery. We consider hybrid WSNs that comprise of both EHS and conventional nodes; these arise when legacy WSNs are upgraded or due to EHS deployment cost issues. We compare conventional and hybrid WSNs on the basis of a new and insightful performance metric called k-outage duration, which captures the inability of the nodes to transmit data either due to lack of sufficient battery energy or wireless fading. The metric overcomes the problem of defining lifetime in networks with EHS nodes, which never die but are occasionally unable to transmit due to lack of sufficient battery energy. It also accounts for the effect of wireless channel fading on the ability of the WSN to transmit data. We develop two novel, tight, and computationally simple bounds for evaluating the k-outage duration. Our results show that increasing the number of EHS nodes has a markedly different effect on the k-outage duration than increasing the number of conventional nodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A composite electrode made up of exfoliated graphite (EG) and diamond was prepared for the electrochemical oxidation of trichloroethylene (TCE). The SEM images of the EG-diamond material showed that diamond powders were dispersed on the surface of EG materials. The N-2 adsorption-desorption isotherm of EG-diamond material resulted in a poor adsorption capability due to the insertion of diamond powders into the porous matrix of EG. Raman spectroscopy revealed the presence of characteristic sp(3) bands of diamond confirming good interaction of diamond with EG. Electrochemical characterisation of EG-diamond in 0.1 M Na2SO4 resulted in an enhanced working potential window. The EG-diamond electrode was employed for the electrochemical oxidation of trichloroethylene (0.2 mM) in a Na2SO4 supporting electrolyte. The EG-diamond, in comparison to the pristine EG electrode, exhibited a higher removal efficiency of 94% (EG was 57%) and faster degradation kinetics of 25.3 x 10(-3) min(-1) showing pseudo first order kinetic behaviour. Under the optimised conditions, 73% total organic content (TOC) removal was achieved after 4 h of electrolysis. The degradation of TCE was also monitored with gas chromatography-mass spectrometry. Dichloroacetic acid (DCAA) was identified as a major intermediate product during the electrochemical oxidation of TCE. The electrochemical degradation of TCE at the EG-diamond electrode represents a cost effective method due to the ease of preparation of EG-diamond composite material without the necessity of diamond activation which is normally achieved through doping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demand for energy efficient, low weight structures has boosted the use of composite structures assembled using increased quantities of structural adhesives. Bonded structures may be subjected to severe working environments such as high temperature and moisture due to which the adhesive gets degraded over a period of time. This reduces the strength of a joint and leads to premature failure. Measurement of strains in the adhesive bondline at any point of time during service may be beneficial as an assessment can be made on the integrity of a joint and necessary preventive actions may be taken before failure. This paper presents an experimental approach of measuring peel and shear strains in the adhesive bondline of composite single-lap joints using digital image correlation. Different sets of composite adhesive joints with varied bond quality were prepared and subjected to tensile load during which digital images were taken and processed using digital image correlation software. The measured peel strain at the joint edge showed a rapid increase with the initiation of a crack till failure of the joint. The measured strains were used to compute the corresponding stresses assuming a plane strain condition and the results were compared with stresses predicted using theoretical models, namely linear and nonlinear adhesive beam models. A similar trend in stress distribution was observed. Further comparison of peel and shear strains also exhibited similar trend for both healthy and degraded joints. Maximum peel stress failure criterion was used to predict the failure load of a composite adhesive joint and a comparison was made between predicted and actual failure loads. The predicted failure loads from theoretical models were found to be higher than the actual failure load for all the joints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suitability of substrate-integrated lead-carbon hybrid ultracapacitors for low-power back-up applications is studied. A practical application that provides 30 W power back-up to low-power medical gadgets for use in grid-power-deficient rural areas is presented. An ultracapacitor bank is designed for this application and the sizing calculations are provided. Experimental validation and results are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a framework for developing and reasoning about hybrid systems that are comprised of a plant with multiple controllers, each of which controls the plant intermittently. The framework is based on the notion of a ``conflict tolerant'' specification for a controller, and provides a modular way of developing and reasoning about such systems. We propose a novel mechanism of defining conflict-tolerant specifications for general hybrid systems, using ``acceptor'' and ``advisor'' components. We also give a decision procedure for verifying whether a controller satisfies its conflict-tolerant specification, in the special case when the components are modeled using initialized rectangular hybrid automata.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-dimensional (2D) nanosheets obtained by exfoliating inorganic layered crystals have emerged as a new class of materials with unique attributes. One of the critical challenges is to develop robust and versatile methods for creating new nanostructures from these 2D-nanosheets. Here we report the delamination of layered materials that belonging to two different classes - the cationic clay, montmorillonite, and the anionic clay, hydrotalcite - by intercalation of appropriate ionic surfactants followed by dispersion in a non-polar solvent. The solids are delaminated to single layers of atomic thickness with the ionic surfactants remaining tethered to the inorganic and consequently the nanosheets are electrically neutral. We then show that when dispersions of the two solids are mixed the exfoliated sheets self-assemble as a new layered solid with periodically alternating hydrotalcite and montmorillonite layers. The procedure outlined here is easily extended to other layered solids for creating new superstructures from 2D-nanosheets by self-assembly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new hybrid multilevel power converter topology is presented in this paper. The proposed power converter topology uses only one DC source and floating capacitors charged to asymmetrical voltage levels, are used for generating different voltage levels. The SVPWM based control strategy used in this converter maintains the capacitor voltages at the required levels in the entire modulation range including the over-modulation region. For the voltage levels: nine and above, the number of components required in the proposed topology is significantly lower, compared to the conventional multilevel inverter topologies. The number of capacitors required in this topology reduces drastically compared to the conventional flying capacitor topology, when the number of levels in the inverter output increases. This topology has better fault tolerance, as it is capable of operating with reduced number of levels, in the entire modulation range, in the event of any failure in the H-bridges. The transient as well as the steady state performance of the nine-level version of the proposed topology is experimentally verified in the entire modulation range including the over-modulation region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multi-component nanomaterials combine the individual properties and give rise to emergent phenomenon. Optical excitations in such hybrid nonmaterial's ( for example Exciton in semiconductor quantum dots and Plasmon in Metal nanomaterials) undergo strong weak electromagnetic coupling. Such exciton-plasmon interactions allow design of absorption and emission properties, control of nanoscale energy-transfer processes, and creation of new excitations in the strong coupling regime.This Exciton plasmon interaction in hybrid nanomaterial can lead to both enhancement in the emission as well as quenching. In this work we prepared close-packed hybrid monolayer of thiol capped CdSe and gold nanoparticles. They exhibit both the Quenching and enhancements the in PL emission.The systematic variance of PL from such hybrid nanomaterials monolayer is studied by tuning the Number ratio of Gold per Quantum dots, the surface density of QDs and the spectral overlap of emission spectrum of QD and absorption spectrum of Gold nanoparticles. Role of Localized surface Plasmon which not only leads to quenching but strong enhancements as well, is explored.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) is an effective extension of NDE to reduce down time and cost of Inspection of structural components. On – line monitoring is an essential part of SHM. Acoustic Emission Techniques have most of the desirable requirements of an effective SHM tool. With the kind of advancement seen in the last couple of decades in the field of electronics, computers and signal processing technologies it can only be more helpful in obtaining better and meaningful quantitative results which can further enhance the potential of AET for the purpose. Advanced Composite materials owing to their specific high performance characteristics are finding a wide range of engineering applications. Testing and Evaluation of this category of materials and SHM of composite structures have been very challenging problems due to the very nature of these materials. Mechanical behaviour of fiber composite materials under different loading conditions is complex and involves different types of failure mechanisms. This is where the potential of AET can be exploited effectively. This paper presents an over view of some relevant studies where AET has been utilised to test, evaluate and monitor health of composite structures.