995 resultados para Hot deformation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the discovery of WASP-4b, a large transiting gas-giant planet with an orbital period of 1.34 days. This is the first planet to be discovered by the SuperWASP-South observatory and CORALIE collaboration and the first planet orbiting a star brighter than 16th magnitude to be discovered in the southern hemisphere. A simultaneous fit to high-quality light curves and precision radial velocity measurements leads to a planetary mass of 1.22(-0.08)(+0.09) M-Jup and a planetary radius of 1.42(-0.04)(+0.07) R-Jup. The host star is USNO-B1.0 0479-0948995, a G7 V star of visual magnitude 12.5. As a result of the short orbital period, the predicted surface temperature of the planet is 1761 K, making it an ideal candidate for detections of the secondary eclipse at infrared wavelengths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The decomposition of N2O was studied using a silica-supported Pt catalyst. The catalyst was found to exhibit short-lived activity at low temperatures to yield N-2 and O-(ads), the latter remained adsorbed on the surface and poisoned the active sites. Creation of hot-O-(ads) atoms during N2O decomposition is proposed to allow O-2 desorption at intermediate temperatures. Inclusion of H-2 as a reducing agent greatly enhanced the activity and suppressed low temperature deactivation. Simultaneous and sequential pulsing of N2O and H-2 showed that H-2 inclusion with the N2O gas stream produced the greatest activity. A mechanism involving H-(ads) addition to

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results from a time-dependent gas-phase chemical model of a hot core based on the physical conditions of G305.2+0.2. While the cyanopolyyne HC3N has been observed in hot cores, the longer chained species, HC5N, HC7N and HC9N, have not been considered as the typical hot-core species. We present results which show that these species can be formed under hot core conditions. We discuss the important chemical reactions in this process and, in particular, show that their abundances are linked to the parent species acetylene which is evaporated from icy grain mantles. The cyanopolyynes show promise as ‘chemical clocks’ which may aid future observations in determining the age of hot core sources. The abundance of the larger cyanopolyynes increases and decreases over relatively short time-scales, ~10^2.5 yr. We present results from a non-local thermodynamic equilibrium statistical equilibrium excitation model as a series of density, temperature and column density dependent contour plots which show both the line intensities and several line ratios. These aid in the interpretation of spectral-line data, even when there is limited line information available. In particular, non-detections of HC5N and HC7N in Walsh et al. are analysed and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer nanocomposites offer the potential of enhanced properties such as increased modulus and barrier properties to the end user. Much work has been carried out on the effects of extrusion conditions on melt processed nanocomposites but very little research has been conducted on the use of polymer nanocomposites in semi-solid forming processes such as thermoforming and injection blow molding. These processes are used to make much of today’s packaging, and any improvements in performance such as possible lightweighting due to increased modulus would bring signi?cant bene?ts both economically and environmentally. The work described here looks at the biaxial deformation of polypropylene–clay nanocomposites under industrial forming conditions in order to determine if the presence of clay affects processability, structure and mechanical properties of the stretched material. Melt compounded polypropylene/clay composites in sheet form were biaxially stretched at a variety of processing conditions to examine the effect of high temperature, high strain and high strain rate processing on sheet structure
and properties.

A biaxial test rig was used to carry out the testing which imposed conditions on the sheet that are representative of those applied in injection blow molding and thermoforming. Results show that the presence of clay increases the yield stress relative to the un?lled material at typical processing temperatures and that the sensitivity of the yield stress to temperature is greater for the ?lled material. The stretching process is found to have a signi?cant effect on the delamination and alignment of clay particles (as observed by TEM) and on yield stress and elongation at break of the stretched sheet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluidised hot melt granulation (FHMG) is a novel technology for granulation process in pharmaceutical industry, which has distinct advantages over other commercial techniques. The aim of this research was to investigate granulation and the effect of process parameters that may affect FHMG process. In this work, ballotini beads were used as the model particles and Lutrol (R) F 68 Poloxamer 188 was used as meltable solid binder. In order to determine the granulation and nucleation mechanism in this co-melt FHMG system, several parameters were investigated, such as binder content, particle size of binder and particle size and hydrophobicity of ballotini. These parameters were correlated to granule size distribution, mean granule size and granule shape. Furthermore, these experimental investigations were designed so that the coalescence model could be applied to the co-melt FHMG system. The analysis indicated that the non-inertial regime extends over a relatively short time period of