966 resultados para High weight molecular polyethylene
Resumo:
BACKGROUND: High fructose consumption is suspected to be causally linked to the epidemics of obesity and metabolic disorders. In rodents, fructose leads to insulin resistance and ectopic lipid deposition. In humans, the effects of fructose on insulin sensitivity remain debated, whereas its effect on ectopic lipids has never been investigated. OBJECTIVE: We assessed the effect of moderate fructose supplementation on insulin sensitivity (IS) and ectopic lipids in healthy male volunteers (n = 7). DESIGN: IS, intrahepatocellular lipids (IHCL), and intramyocellular lipids (IMCL) were measured before and after 1 and 4 wk of a high-fructose diet containing 1.5 g fructose . kg body wt(-1) . d(-1). Adipose tissue IS was evaluated from nonesterified fatty acid suppression, hepatic IS from suppression of hepatic glucose output (6,6-2H2-glucose), and muscle IS from the whole-body glucose disposal rate during a 2-step hyperinsulinemic euglycemic clamp. IHCL and IMCL were measured by 1H magnetic resonance spectroscopy. RESULTS: Fructose caused significant (P < 0.05) increases in fasting plasma concentrations of triacylglycerol (36%), VLDL-triacylglycerol (72%), lactate (49%), glucose (5.5%), and leptin (48%) without any significant changes in body weight, IHCL, IMCL, or IS. IHCL were negatively correlated with triacylglycerol after 4 wk of the high-fructose diet (r = -0.78, P < 0.05). CONCLUSION: Moderate fructose supplementation over 4 wk increases plasma triacylglycerol and glucose concentrations without causing ectopic lipid deposition or insulin resistance in healthy humans.
Resumo:
We purified from activated T lymphocytes a novel, highly conserved, 116-kDa, intracellular protein that occurred at high levels in the large, dividing cells of the thymus, was up-regulated when resting T or B lymphocytes or hemopoietic progenitors were activated, and was down-regulated when a monocytic leukemia, M1, was induced to differentiate. Expression of the protein was highest in the thymus and spleen and lowest in tissues with a low proportion of dividing cells such as kidney or muscle, although expression was high in the brain. The protein was localized to the cytosol and was phosphorylated, which is consistent with a previous report that the Xenopus laevis ortholog was phosphorylated by a mitotically activated kinase (1 ). The cDNA was previously mischaracterized as encoding p137, a 137-kDa GPI-linked membrane protein (2 ). We propose that the authentic protein encoded by this cDNA be called cytoplasmic activation/proliferation-associated protein-1 (caprin-1), and show that it is the prototype of a novel family of proteins characterized by two novel protein domains, termed homology regions-1 and -2 (HR-1, HR-2). Although we have found evidence for caprins only in urochordates and vertebrates, two insect proteins exhibit well-conserved HR-1 domains. The HR-1 and HR-2 domains have no known function, although the HR-1 of caprin-1 appeared necessary for formation of multimeric complexes of caprin-1. Overexpression of a fusion protein of enhanced green fluorescent protein and caprin-1 induced a specific, dose-dependent suppression of the proliferation of NIH-3T3 cells, consistent with the notion that caprin-1 plays a role in cellular activation or proliferation.
Resumo:
To conserve natural resources and energy, the amount of recycled asphalt pavement has been steadily increasing in the construction of asphalt pavements. The objective of this study is to develop quality standards for inclusion of high RAP content. To determine if the higher percentage of RAP materials can be used on Iowa’s state highways, three test sections with target amounts of RAP materials of 30%, 35% and 40% by weight were constructed on Highway 6 in Iowa City. To meet Superpave mix design requirements for mixtures with high RAP contents, it was necessary to fractionate the RAP materials. Three test sections with actual RAP materials of 30.0%, 35.5% and 39.2% by weight were constructed and the average field densities from the cores were measured as 95.3%, 94.0%, and 94.3%, respectively. Field mixtures were compacted in the laboratory to evaluate moisture sensitivity using a Hamburg Wheel Tracking Device. After 20,000 passes, rut depths were less than 3mm for mixtures obtained from three test sections. The binder was extracted from the field mixtures from each test section and tested to identify the effects of RAP materials on the performance grade of the virgin binder. Based on Dynamic Shear Rheometer and Bending Beam Rheometer tests, the virgin binders (PG 64-28) from test sections with 30.0%, 35.5% and 39.2% RAP materials were stiffened to PG 76-22, PG 76-16, and PG 82-16, respectively. The Semi-Circular Bending (SCB) test was performed on laboratory compacted field mixtures with RAP amounts of 30.0%, 35.5% and 39.2% at two different temperatures of -18 and -30 °C. As the test temperature decreased, the fracture energy decreased and the stiffness increased. As the RAP amount increased, the stiffness increased and the fracture energy decreased. Finally, a condition survey of the test sections was conducted to evaluate their short-term pavement performance and the reflective transverse cracking did not increase as RAP amount was increased from 30.0% to 39.2%.
Resumo:
The expression of the 240 ConA-binding glycoprotein (240 kDa), a marker of synaptic junctions isolated from the rat cerebellum, was studied by immunocytochemical techniques in forebrain and cerebellum from rat and chicken, and in chick dorsal root ganglia. Parallel studies were carried out either on tissue sections or in dissociated cell cultures. In all cases non neuronal cells were not immunostained. The tissue sections of cerebellum from rat and chick exhibited 240 kDa glycoprotein immunoreactivity, especially in the molecular layer, while the forebrain sections from rat and chick did not show any significant immunostaining. In contrast, in dissociated forebrain cell cultures, all neuronal cells expressed 240 kDa glycoprotein immunoreactivity, while glial cells remained totally unlabelled. In tissue sections of dorsal root ganglion (DRG), sensory neurons expressed the 240 kDa only after the embryonic day (E 10). A large number of small neurons in the dorsomedial part of DRG were immunostained with 240 kDa glycoprotein antiserum, whereas only a small number of neurons in the ventrolateral part of the ganglia displayed 240 kDa immunoreactivity. In dissociated DRG cells cultures (mixed or neuron-enriched DRG cell cultures) all the neuronal perikarya but not their processes were stained. These studies indicate that 240 kDa glycoprotein expression is completely modified in cultures of neurons of CNS or PNS since the antigen becomes synthetized in high amount by all cells independent of synapse formation. This demonstrates that the expression of 240 kDa is controlled by the cell environment.
Resumo:
Members of the Sox gene family of transcription factors are defined by the presence of an 80 amino acid homology domain, the High Mobility Group (HMG) box. Here we report the cloning and initial analysis of murine Sox-13 . The 984 amino acids Sox-13 protein contains a single HMG box, a leucine zipper motif and a glutamine-rich stretch. These characteristics are shared with another member of the Sox gene family, Sox-6. High level embryonic expression of Sox-13 occurs uniquely in the arterial walls of 13.5 days post coitum (dpc) mice and later. Low level expression was observed in the inner ear of 13.5 dpc mice and in a limited number of cells in the thymus of 16.5 dpc mice, from which Sox-13 was originally cloned. At 18.5 dpc, Sox-13 is expressed in the tracheal epithelium below the vocal cord and in the hair follicles. The Sox-13 protein binds to the consensus HMG box motif, AACAAAG, but does not transactivate transcription through a concatamer of this motif. Sox-13, like other members of the Sox family likely plays an important role in development.
Resumo:
Efficient immune attack of malignant disease requires the concerted action of both CD8+ CTL and CD4+ Th cells. We used human leukocyte antigen (HLA)-A*0201 (A2.1) transgenic mice, in which the mouse CD8 molecule cannot efficiently interact with the alpha3 domain of A2.1, to generate a high-affinity, CD8-independent T cell receptor (TCR) specific for a commonly expressed, tumor-associated cytotoxic T lymphocyte (CTL) epitope derived from the human p53 tumor suppressor protein. Retroviral expression of this CD8-independent, p53-specific TCR into human T cells imparted the CD8+ T lymphocytes with broad tumor-specific CTL activity and turned CD4+ T cells into potent tumor-reactive, p53A2.1-specific Th cells. Both T cell subsets were cooperative and interacted synergistically with dendritic cell intermediates and tumor targets. The intentional redirection of both CD4+ Th cells and CD8+ CTL by the same high-affinity, CD8-independent, tumor-specific TCR could provide the basis for novel broad-spectrum cancer immunotherapeutics.
Resumo:
It is generally accepted that high density polyethylene pipe (HDPE) performs well under live loads with shallow cover, provided the backfill is well compacted. Although industry standards require carefully compacted backfill, poor inspection and/or faulty construction may result in soils that provide inadequate restraint at the springlines of the pipes thereby causing failure. The objectives of this study were: 1) to experimentally define a lower limit of compaction under which the pipes perform satisfactorily, 2) to quantify the increase in soil support as compaction effort increases, 3) to evaluate pipe response for loads applied near the ends of the buried pipes, 4) to determine minimum depths of cover for a variety of pipes and soil conditions by analytically expanding the experimental results through the use of the finite element program CANDE. The test procedures used here are conservative especially for low-density fills loaded to high contact stresses. The failures observed in these tests were the combined effect of soil bearing capacity at the soil surface and localized wall bending of the pipes. Under a pavement system, the pipes' performance would be expected to be considerably better. With those caveats, the following conclusions are drawn from this study. Glacial till compacted to 50% and 80% provides insufficient support; pipe failureoccurs at surface contact stresses lower than those induced by highway trucks. On the other hand, sand backfill compacted to more than 110 pcf (17.3 kN/m3) is satisfactory. The failure mode for all pipes with all backfills is localized wall bending. At moderate tire pressures, i.e. contact stresses, deflections are reduced significantly when backfill density is increased from about 50 pcf (7.9 kN/m^3) to 90 pcf (14.1 kN/m^3). Above that unit weight, little improvement in the soil-pipe system is observed. Although pipe stiffness may vary as much as 16%, analyses show that backfill density is more important than pipe stiffness in controlling both deflections at low pipe stresses and at the ultimate capacity of the soil-pipe system. The rate of increase in ultimate strength of the system increases nearly linearly with increasing backfill density. When loads equivalent to moderate tire pressures are applied near the ends of the pipes, pipe deflections are slighly higher than when loaded at the center. Except for low density glacial till, the deflections near the ends are not excessive and the pipes perform satisfactorily. For contact stresses near the upper limit of truck tire pressures and when loaded near the end, pipes fail with localized wall bending. For flowable fill backfill, the ultimate capacity of the pipes is nearly doubled and at the upper limit of highway truck tire pressures, deflections are negligible. All pipe specimens tested at ambient laboratory room temperatures satisfied AASHTO minimum pipe stiffness requirements at 5% deflection. However, nearly all specimens tested at elevated pipe surface temperatures, approximately 122°F (50°C), failed to meet these requirements. Some HDPE pipe installations may not meet AASHTO minimum pipe stiffness requirements when installed in the summer months (i.e. if pipe surface temperatures are allowed to attain temperatures similar to those tested here). Heating of any portion of the pipe circumference reduced the load carrying capacity of specimens. The minimum soil cover depths, determined from the CANOE analysis, are controlled by the 5% deflection criterion. The minimum soil cover height is 12 in. (305 mm). Pipes with the poor silt and clay backfills with less than 85% compaction require a minimum soil cover height of 24 in. (610 mm). For the sand at 80% compaction, the A36 HDPE pipe with the lowest moment of inertia requires a minimum of 24 in. (610 mm) soil cover. The C48 HDPE pipe with the largest moment of inertia and all other pipes require a 12 in. (305 mm) minimum soil cover.
Resumo:
The influence of external factors on food preferences and choices is poorly understood. Knowing which and how food-external cues impact the sensory processing and cognitive valuation of food would provide a strong benefit toward a more integrative understanding of food intake behavior and potential means of interfering with deviant eating patterns to avoid detrimental health consequences for individuals in the long run. We investigated whether written labels with positive and negative (as opposed to 'neutral') valence differentially modulate the spatio-temporal brain dynamics in response to the subsequent viewing of high- and low-energetic food images. Electrical neuroimaging analyses were applied to visual evoked potentials (VEPs) from 20 normal-weight participants. VEPs and source estimations in response to high- and low- energy foods were differentially affected by the valence of preceding word labels over the ~260-300 ms post-stimulus period. These effects were only observed when high-energy foods were preceded by labels with positive valence. Neural sources in occipital as well as posterior, frontal, insular and cingulate regions were down-regulated. These findings favor cognitive-affective influences especially on the visual responses to high-energetic food cues, potentially indicating decreases in cognitive control and goal-adaptive behavior. Inverse correlations between insular activity and effectiveness in food classification further indicate that this down-regulation directly impacts food-related behavior.
Resumo:
A plant species' genetic population structure is the result of a complex combination of its life history, ecological preferences, position in the ecosystem and historical factors. As a result, many different statistical methods exist that measure different aspects of species' genetic structure. However, little is known about how these methods are interrelated and how they are related to a species' ecology and life history. In this study, we used the IntraBioDiv amplified fragment length polymorphisms data set from 27 high-alpine species to calculate eight genetic summary statistics that we jointly correlate to a set of six ecological and life-history traits. We found that there is a large amount of redundancy among the calculated summary statistics and that there is a significant association with the matrix of species traits. In a multivariate analysis, two main aspects of population structure were visible among the 27 species. The first aspect is related to the species' dispersal capacities and the second is most likely related to the species' postglacial recolonization of the Alps. Furthermore, we found that some summary statistics, most importantly Mantel's r and Jost's D, show different behaviour than expected based on theory. We therefore advise caution in drawing too strong conclusions from these statistics.
Resumo:
The aim of this work was to quantify low molecular weight organic acids in the rhizosphere of plants grown in a sewage sludge-treated media, and to assess the correlation between the release of the acids and the concentrations of trace-elements in the shoots of the plants. The species utilized in the experiment were cultivated in sand and sewage sludge-treated sand. The acetic, citric, lactic, and oxalic acids, were identified and quantified by high performance liquid chromatography in samples collected from a hydroponics system. Averages obtained from each treatment, concentration of trace elements in shoots and concentration of organic acids in the rhizosphere, were compared by Tukey test, at 5% of probability. Linear correlation analysis was applied to verify an association between the concentrations of organic acids and of trace elements. The average composition of organic acids for all plants was: 43.2, 31.1, 20.4 and 5.3% for acetic, citric, lactic, and oxalic acids, respectively. All organic acids evaluated, except for the citric acid, showed a close statistical agreement with the concentrations of Cd, Cu, Ni, and Zn found in the shoots. There is a positive relationship between organic acids present in the rhizosphere and trace element phytoavailability.
Resumo:
BACKGROUND: Administration of 13-cis retinoic acid (isotretinoin) for acne is occasionally accompanied by hyperlipidemia. It is not known why some persons develop this side effect. OBJECTIVE: To determine whether isotretinoin triggers a familial susceptibility to hyperlipidemia and the metabolic syndrome. DESIGN: Cross-sectional comparison. SETTING: University hospital in Lausanne, Switzerland. PARTICIPANTS: 102 persons in whom triglyceride levels increased at least 1.0 mmol/L (> or =89 mg/dL) (hyperresponders) and 100 persons in whom triglyceride levels changed 0.1 mmol/L (< or =9 mg/dL) or less (nonresponders) during isotretinoin therapy for acne. Parents of 71 hyperresponders and 60 nonresponders were also evaluated. MEASUREMENTS: Waist-to-hip ratio; fasting glucose, insulin, and lipid levels; and apoE genotype. RESULTS: Hyperresponders and nonresponders had similar pretreatment body weight and plasma lipid levels. When reevaluated approximately 4 years after completion of isotretinoin therapy, hyperresponders were more likely to have hypertriglyceridemia (triglyceride level > 2.0 mmol/L [>177 mg/dL]; odds ratio [OR], 4.8 [95% CI, 1.6 to 13.8]), hypercholesterolemia (cholesterol level > 6.5 mmol/L [>252 mg/dL]; OR, 9.1 [CI, 1.9 to 43]), truncal obesity (waist-to-hip ratio > 0.90 [OR, 11.0 (CI, 2.0 to 59]), and hyperinsulinemia (insulin-glucose ratio > 7.2; OR, 3.0 [CI, 1.6 to 5.7]). In addition, more hyperresponders had at least one parent with hypertriglyceridemia (OR, 2.6 [CI, 1.2 to 5.7]) or a ratio of total to high-density lipoprotein cholesterol that exceeded 4.0 (OR, 3.5 [CI, 1.5 to 8.0]). Lipid response to isotretinoin was closely associated with the apoE gene. CONCLUSION: Persons who develop hypertriglyceridemia during isotretinoin therapy for acne, as well as their parents, are at increased risk for future hyperlipidemia and the metabolic syndrome.
Resumo:
Regulatory T cells (Tregs) play a key role in immune system homeostasis and tolerance to antigens, thereby preventing autoimmunity, and may be partly responsible for the lack of an appropriate immune response against tumor cells. Although not sufficient, a high expression of forkhead box P3 (FOXP3) is necessary for their suppressive function. Recent reports have shown that histones deacetylase inhibitors increased FOXP3 expression in T cells. We therefore decided to investigate in non-Tregs CD4-positive cells, the mechanisms by which an aspecific opening of the chromatin could lead to an increased FOXP3 expression. We focused on binding of potentially activating transcription factors to the promoter region of FOXP3 and on modifications in the five miRs constituting the Tregs signature. Valproate treatment induced binding of Ets-1 and Ets-2 to the FOXP3 promoter and acted positively on its expression, by increasing the acetylation of histone H4 lysines. Valproate treatment also induced the acquisition of the miRs Tregs signature. To elucidate whether the changes in the miRs expression could be due to the increased FOXP3 expression, we transduced these non-Tregs with a FOXP3 lentiviral expression vector, and found no changes in miRs expression. Therefore, the modification in their miRs expression profile is not due to an increased expression of FOXP3 but directly results from histones deacetylase inhibition. Rather, the increased FOXP3 expression results from the additive effects of Ets factors binding and the change in expression level of miR-21 and miR-31. We conclude that valproate treatment of human non-Tregs confers on them a molecular profile similar to that of their regulatory counterpart.
Resumo:
The concept of energy gap(s) is useful for understanding the consequence of a small daily, weekly, or monthly positive energy balance and the inconspicuous shift in weight gain ultimately leading to overweight and obesity. Energy gap is a dynamic concept: an initial positive energy gap incurred via an increase in energy intake (or a decrease in physical activity) is not constant, may fade out with time if the initial conditions are maintained, and depends on the 'efficiency' with which the readjustment of the energy imbalance gap occurs with time. The metabolic response to an energy imbalance gap and the magnitude of the energy gap(s) can be estimated by at least two methods, i.e. i) assessment by longitudinal overfeeding studies, imposing (by design) an initial positive energy imbalance gap; ii) retrospective assessment based on epidemiological surveys, whereby the accumulated endogenous energy storage per unit of time is calculated from the change in body weight and body composition. In order to illustrate the difficulty of accurately assessing an energy gap we have used, as an illustrative example, a recent epidemiological study which tracked changes in total energy intake (estimated by gross food availability) and body weight over 3 decades in the US, combined with total energy expenditure prediction from body weight using doubly labelled water data. At the population level, the study attempted to assess the cause of the energy gap purported to be entirely due to increased food intake. Based on an estimate of change in energy intake judged to be more reliable (i.e. in the same study population) and together with calculations of simple energetic indices, our analysis suggests that conclusions about the fundamental causes of obesity development in a population (excess intake vs. low physical activity or both) is clouded by a high level of uncertainty.
Resumo:
3 Summary 3. 1 English The pharmaceutical industry has been facing several challenges during the last years, and the optimization of their drug discovery pipeline is believed to be the only viable solution. High-throughput techniques do participate actively to this optimization, especially when complemented by computational approaches aiming at rationalizing the enormous amount of information that they can produce. In siiico techniques, such as virtual screening or rational drug design, are now routinely used to guide drug discovery. Both heavily rely on the prediction of the molecular interaction (docking) occurring between drug-like molecules and a therapeutically relevant target. Several softwares are available to this end, but despite the very promising picture drawn in most benchmarks, they still hold several hidden weaknesses. As pointed out in several recent reviews, the docking problem is far from being solved, and there is now a need for methods able to identify binding modes with a high accuracy, which is essential to reliably compute the binding free energy of the ligand. This quantity is directly linked to its affinity and can be related to its biological activity. Accurate docking algorithms are thus critical for both the discovery and the rational optimization of new drugs. In this thesis, a new docking software aiming at this goal is presented, EADock. It uses a hybrid evolutionary algorithm with two fitness functions, in combination with a sophisticated management of the diversity. EADock is interfaced with .the CHARMM package for energy calculations and coordinate handling. A validation was carried out on 37 crystallized protein-ligand complexes featuring 11 different proteins. The search space was defined as a sphere of 15 R around the center of mass of the ligand position in the crystal structure, and conversely to other benchmarks, our algorithms was fed with optimized ligand positions up to 10 A root mean square deviation 2MSD) from the crystal structure. This validation illustrates the efficiency of our sampling heuristic, as correct binding modes, defined by a RMSD to the crystal structure lower than 2 A, were identified and ranked first for 68% of the complexes. The success rate increases to 78% when considering the five best-ranked clusters, and 92% when all clusters present in the last generation are taken into account. Most failures in this benchmark could be explained by the presence of crystal contacts in the experimental structure. EADock has been used to understand molecular interactions involved in the regulation of the Na,K ATPase, and in the activation of the nuclear hormone peroxisome proliferatoractivated receptors a (PPARa). It also helped to understand the action of common pollutants (phthalates) on PPARy, and the impact of biotransformations of the anticancer drug Imatinib (Gleevec®) on its binding mode to the Bcr-Abl tyrosine kinase. Finally, a fragment-based rational drug design approach using EADock was developed, and led to the successful design of new peptidic ligands for the a5ß1 integrin, and for the human PPARa. In both cases, the designed peptides presented activities comparable to that of well-established ligands such as the anticancer drug Cilengitide and Wy14,643, respectively. 3.2 French Les récentes difficultés de l'industrie pharmaceutique ne semblent pouvoir se résoudre que par l'optimisation de leur processus de développement de médicaments. Cette dernière implique de plus en plus. de techniques dites "haut-débit", particulièrement efficaces lorsqu'elles sont couplées aux outils informatiques permettant de gérer la masse de données produite. Désormais, les approches in silico telles que le criblage virtuel ou la conception rationnelle de nouvelles molécules sont utilisées couramment. Toutes deux reposent sur la capacité à prédire les détails de l'interaction moléculaire entre une molécule ressemblant à un principe actif (PA) et une protéine cible ayant un intérêt thérapeutique. Les comparatifs de logiciels s'attaquant à cette prédiction sont flatteurs, mais plusieurs problèmes subsistent. La littérature récente tend à remettre en cause leur fiabilité, affirmant l'émergence .d'un besoin pour des approches plus précises du mode d'interaction. Cette précision est essentielle au calcul de l'énergie libre de liaison, qui est directement liée à l'affinité du PA potentiel pour la protéine cible, et indirectement liée à son activité biologique. Une prédiction précise est d'une importance toute particulière pour la découverte et l'optimisation de nouvelles molécules actives. Cette thèse présente un nouveau logiciel, EADock, mettant en avant une telle précision. Cet algorithme évolutionnaire hybride utilise deux pressions de sélections, combinées à une gestion de la diversité sophistiquée. EADock repose sur CHARMM pour les calculs d'énergie et la gestion des coordonnées atomiques. Sa validation a été effectuée sur 37 complexes protéine-ligand cristallisés, incluant 11 protéines différentes. L'espace de recherche a été étendu à une sphère de 151 de rayon autour du centre de masse du ligand cristallisé, et contrairement aux comparatifs habituels, l'algorithme est parti de solutions optimisées présentant un RMSD jusqu'à 10 R par rapport à la structure cristalline. Cette validation a permis de mettre en évidence l'efficacité de notre heuristique de recherche car des modes d'interactions présentant un RMSD inférieur à 2 R par rapport à la structure cristalline ont été classés premier pour 68% des complexes. Lorsque les cinq meilleures solutions sont prises en compte, le taux de succès grimpe à 78%, et 92% lorsque la totalité de la dernière génération est prise en compte. La plupart des erreurs de prédiction sont imputables à la présence de contacts cristallins. Depuis, EADock a été utilisé pour comprendre les mécanismes moléculaires impliqués dans la régulation de la Na,K ATPase et dans l'activation du peroxisome proliferatoractivated receptor a (PPARa). Il a également permis de décrire l'interaction de polluants couramment rencontrés sur PPARy, ainsi que l'influence de la métabolisation de l'Imatinib (PA anticancéreux) sur la fixation à la kinase Bcr-Abl. Une approche basée sur la prédiction des interactions de fragments moléculaires avec protéine cible est également proposée. Elle a permis la découverte de nouveaux ligands peptidiques de PPARa et de l'intégrine a5ß1. Dans les deux cas, l'activité de ces nouveaux peptides est comparable à celles de ligands bien établis, comme le Wy14,643 pour le premier, et le Cilengitide (PA anticancéreux) pour la seconde.
Resumo:
BACKGROUND: High-dose therapy with autologous stem cell support after standard dose induction is a promising approach for therapy of primary central nervous system lymphoma (PCNSL). High-dose methotrexate (HD-MTX) is a standard drug for induction of PCNSL; however, data about the capacity of HD-MTX plus granulocyte-colony-stimulating factor (G-CSF) to mobilize hemopoietic progenitors are lacking. STUDY DESIGN AND METHODS: This investigation describes the data from stem cell mobilization and apheresis procedures after one or two cycles of HD-MTX for induction of PCNSL within the East German Study Group for Haematology and Oncology 053 trial. Eligible patients proceeded to high-dose busulfan/thiotepa after induction therapy and mobilization. RESULTS: Data were available from nine patients with a median age of 58 years. The maximal CD34+ cell count per microL of blood after the first course of HD-MTX was 13.89 (median). Determination was repeated in six patients after the second course with a significantly higher median CD34+ cell count of 33.69 per microL. Five patients required two apheresis procedures and in four patients a single procedure was sufficient. The total yield of CD34+ cells per kg of body weight harvested by one or two leukapheresis procedures was 6.60 x 10(6) (median; range, 2.68 x 10(6)-15.80 x 10(6)). The yield of CD34+ cells exceeded the commonly accepted lower threshold of 3 x 10(6) cells per kg of body weight in eight of nine cases. Even in the ninth, hemopoietic recovery after stem cell reinfusion was rapid and safe. CONCLUSION: HD-MTX plus G-CSF is a powerful combination for stem cell mobilization in patients with PCNSL and permits safe conduction of time-condensed and dose-intense protocols with high-dose therapy followed by stem cell reinfusion after HD-MTX induction.