997 resultados para Hidden Genes
Resumo:
Maestro en Ciencias con Especialidad en Biología Molecular e Ingeniería Genética) U.A.N.L.
Resumo:
Tesis (Maestro en Ciencias con especialidad en Inmunobiología) U. A. N. L., Facultad de Ciencias Biológicas, 2008.
Resumo:
Tesis (Maestría en Ciencias con Acentuación en Microbiología) UANL, 2011.
Resumo:
Tesis (Maestría en Ciencias con Acentuación en Inmunolobiología) UANL, 2012.
Resumo:
Tesis (Maestría en Ciencias con Orientación Terminal en Biología Molecular e Ingeniería Genética) UANL, 2012.
Detección de SNPs en genes asociados a obesidad y cáncer de mama en pacientes del Noreste de México.
Resumo:
Tesis (Maestría en Ciencias con Especialidad en Biología Molecular e Ingeniería Genética) UANL, 2012.
Resumo:
Tesis (Maestría en Ciencias con Acentuación en Inmunolobiología) UANL, 2013.
Resumo:
Tesis (Maestría en Ciencias con Especialidad en Biología Molecular e Ingeniería Genética) UANL, 2013.
Resumo:
Tesis (Maestro en Ciencia Animal) UANL, 2014.
Resumo:
Tesis (Maestría en Ciencias en Nutrición) UANL, 2014.
Resumo:
Tesis (Maestría en Ciencias en Nutrición) UANL, 2014.
Resumo:
UANL
Resumo:
Proteolytic processing of the CUX1 transcription factor generates an isoform, p110 that accelerates entry into S phase. To identify targets of p110 CUX1 that are involved in cell cycle progression, we performed genome-wide location analysis using a promoter microarray. Since there are no antibodies that specifically recognize p110, but not the full-length protein, we expressed physiological levels of a p110 isoform with two tags and purified chromatin by tandem affinity purification (ChAP). Conventional ChIP performed on synchronized populations of cells confirmed that p110 CUX1 is recruited to the promoter of cell cycle-related targets preferentially during S phase. Multiple approaches including silencing RNA (siRNA), transient infection with retroviral vectors, constitutive expression and reporter assays demonstrated that most cell cycle targets are activated whereas a few are repressed or not affected by p110 CUX1. Functional classes that were over-represented among targets included DNA replication initiation. Consistent with this finding, constitutive expression of p110 CUX1 led to a premature and more robust induction of replication genes during cell cycle progression, and stimulated the long-term replication of a plasmid bearing the oriP replicator of Epstein Barr virus (EBV).
Resumo:
Les microARNs appartiennent à la famille des petits ARNs non-codants et agissent comme inhibiteurs des ARN messagers et/ou de leurs produits protéiques. Les mi- croARNs sont différents des petits ARNs interférants (siARN) car ils atténuent l’ex- pression au lieu de l’éliminer. Dans les dernières années, de nombreux microARNs et leurs cibles ont été découverts chez les mammifères et les plantes. La bioinforma- tique joue un rôle important dans ce domaine, et des programmes informatiques de découvertes de cibles ont été mis à la disposition de la communauté scientifique. Les microARNs peuvent réguler chacun des centaines de gènes, et les profils d’expression de ces derniers peuvent servir comme classificateurs de certains cancers. La modélisation des microARNs artificiels est donc justifiable, où l’un pourrait cibler des oncogènes surexprimés et promouvoir une prolifération de cellules en santé. Un outil pour créer des microARNs artificiels, nommé MultiTar V1.0, a été créé et est disponible comme application web. L’outil se base sur des propriétés structurelles et biochimiques des microARNs et utilise la recherche tabou, une métaheuristique. Il est démontré que des microARNs conçus in-silico peuvent avoir des effets lorsque testés in-vitro. Les sé- quences 3’UTR des gènes E2F1, E2F2 et E2F3 ont été soumises en entrée au programme MultiTar, et les microARNs prédits ont ensuite été testés avec des essais luciférases, des western blots et des courbes de croissance cellulaire. Au moins un microARN artificiel est capable de réguler les trois gènes par essais luciférases, et chacun des microARNs a pu réguler l’expression de E2F1 et E2F2 dans les western blots. Les courbes de crois- sance démontrent que chacun des microARNs interfère avec la croissance cellulaire. Ces résultats ouvrent de nouvelles portes vers des possibilités thérapeutiques.