973 resultados para Hemilabile ligand


Relevância:

10.00% 10.00%

Publicador:

Resumo:

J Biol Inorg Chem (2007) 12:353–366 DOI 10.1007/s00775-006-0191-9

Relevância:

10.00% 10.00%

Publicador:

Resumo:

J Biol Inorg Chem (2006) 11: 548–558 DOI 10.1007/s00775-006-0104-y

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The type I interferon system is integral to human antiviral immunity. However, inappropriate stimulation or defective negative regulation of this system can lead to inflammatory disease. We sought to determine the molecular basis of genetically uncharacterized cases of the type I interferonopathy Aicardi-Goutières syndrome, and of other patients with undefined neurological and immunological phenotypes also demonstrating an upregulated type I interferon response. We found that heterozygous mutations in the cytosolic double-stranded RNA receptor gene IFIH1 (MDA5) cause a spectrum of neuro-immunological features consistently associated with an enhanced interferon state. Cellular and biochemical assays indicate that these mutations confer a gain-of-function - so that mutant IFIH1 binds RNA more avidly, leading to increased baseline and ligand-induced interferon signaling. Our results demonstrate that aberrant sensing of nucleic acids can cause immune upregulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction. This study aims to compare the molecular gene expression during ischemia reperfusion injury. Several surgical times were considered: in the beginning of the harvesting (T0), at the end of the cold ischemia period (T1), and after reperfusion (T2) and compared with graft dysfunction after liver transplant (OLT). Methods. We studied 54 patients undergoing OLT. Clinical, laboratory data, and histologic data (Suzuki classification) as well as the Survival Outcomes Following Liver Transplantation (SOFT) score were used and compared with the molecular gene expression of the following genes: Interleukin (IL)-1b, IL-6, tumor necrosis factor-a, perforin, E-selectin (SELE), Fas-ligand, granzyme B, heme oxygenase-1, and nitric oxide synthetase. Results. Fifteen patients presented with graft dysfunction according to SOFT criteria. No relevant data were obtained by comparing the variables graft dysfunction and histologic variables. We observed a statistically significant relation between SELE at T0 (P ¼ .013) and IL-1b at T0 (P ¼ .028) and early graft dysfunction. Conclusions. We conclude that several genetically determined proinflammatory expressions may play a critical role in the development of graft dysfunction after OLT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada para a obtenção do Grau de Doutor em Química Sustentável, especialidade de Química-Física Inorgânica, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation to obtain a Master Degree in Molecular Genetics and Biomedicine at Faculty of Sciences and Technology,Universidade Nova de Lisboa

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation presented to obtain the PhD degree in Biochemistry, Neurosciences

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada para a obtenção do Grau de Mestre em Biotecnologia, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Biotecnologia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Química Sustentável

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aimed at the development of a (bio)polymeric monolithic support for biopharmaceuticals purification and/or capture. For that, it was assured that functional groups on its surface were ready to be involved in a plethora of chemical reactions for incorporation of the desired and most suitable ligand. Using cryogelation as preparation method a screening on multiple combinations of materials was performed in order to create a potentially efficient support with the minimal footprint, i.e. a monolithic support with reasonable mechanical properties, highly permeable, biocompatible, ready to use, with gravitational performance and minimal unspecific interactions towards the target molecules, but also biodegradable and produced from renewable materials. For the pre-selection all monoliths were characterized physico-chemically and morphologically; one agarose-based and two chitosan-based monoliths were then subjected to further characterizations before and after their modification with magnetic nanoparticles. These three specimens were finally tested towards adenovirus and the recovery reached 84% for the chitosan-GMA plain monolith prepared at -80°C. Monoliths based on chitosan and PVA were prepared in the presence and absence of magnetic particles, and tested for the isolation of GFP directly from crude cellular extracts. The affinity ligand A4C7 previously selected for GFP purification was synthesized on the monolith. The results indicated that the solid-phase synthesis of the ligand directly onto the monolith might require optimization and that the large pores of the monoliths are unsuitable for the purification of small proteins, such as GFP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para a obtenção do grau de Mestre em Genética Molecular e Biomedicina

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell-to-cell communication is required for many biological processes in development and adult life. One of the most common systems utilized by a wide range of eukaryotes is the Notch signalling pathway. Four Notch receptors and five ligands have been identified in mammals that interact via their extracellular domains leading to transcription activation. Studies have shown that the Notch ligands expression is undetectable in normal breast tissues, but moderate to high expression has been detected in breast cancer. Thus, any of the Notch1 ligands can be studied as possible therapeutic targets for breast cancer. To study Notch pathway proteins there is the need to obtain stable protein solutions. E. coli is the host of excellence for recombinant proteins for the ease of use, fast growth and high cell densities. However, the expression of mammalian proteins in such systems may overwhelm the bacterial cellular machinery, which does not possess the ability for post-translational modifications, or dedicated compartments for protein synthesis. Mammalian cells are therefore preferred, despite their technical and financial increased demands. We aim to determine the best expression and purification conditions for the different ligand protein constructs, to develop specific function-blocking antibodies using the Phage Display technology. Moreover, we propose to crystallize the Notch1 ligands alone and in complex with the phage display selected antibodies, unveiling molecular details. hJag2DE3 and hDll1DE6 proteins were purified from refolded inclusion bodies or mammalian cell culture supernatants, respectively, and purity was confirmed by SDS-PAGE (>95%). Protein produced in mammalian cells showed to be more stable, apparently with the physiological disulfide pattern, contrary to what was observed in the refolded protein. Several nano-scale crystallization experiments were set up in 96-well plates, but no positive result was obtained. We will continue to pursue for the best expression for the Notch ligand constructs in both expression systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phage display technology is a powerful platform for the generation of highly specific human monoclonal antibodies (Abs) with potential use in clinical applications. Moreover, this technique has also proven to be a reliable approach in identifying and validating new cancer-related targets. For scientific or medical applications, different types of Ab libraries can be constructed. The use of Fab Immune libraries allows the production of high quality and affinity antigen-specific Abs. In this work, two immune human phage display IgG Fab libraries were generated from the Ab repertoire of 16 breast cancer patients, in order to obtain a tool for the development of new therapeutic Abs for breast cancer, a condition that has great impact worldwide. The generated libraries are estimated to contain more than 108 independent clones and a diversity over 90%. Libraries validation was pursued by selection against BSA, a foreign and highly immunogenic protein, and HER2, a well established cancer target. Preliminary results suggested that phage pools with affinity for these antigens were selected and enriched. Individual clones were isolated, however, it was not possible to obtain enough data to further characterize them. Selection against the DLL1 protein was also performed, once it is a known ligand of the Notch pathway, whose deregulation is associated to breast cancer, making it an interesting target for the generation of function-blocking Abs. Selection resulted in the isolation of a clone with low affinity and Fab expression levels. The validation process was not completed and further effort will have to be put in this task in the future. Although immune libraries concept implies limited applicability, the library reported here has a wide range of use possibilities, since it was not restrained to a single antigen but instead thought to be used against any breast cancer associated target, thus being a valuable tool.