965 resultados para Heavy swine
Resumo:
The use of biosolids in horticulture could contribute to recycle residues produced by men. This study analyzed concentrations of Cu, Mn and Zn in the compost during fermentation, in the soil amended with the composts and in the tomato plant materials. Five composts were produced using sugar-cane bagasse, biosolid and cattle manure in the proportions: 75-0-25; 75-12.5-12.5; 75-25-0; 50-50- 0 and 0-100-0 (composts with 0; 12.5; 25; 50 and 100% biosolid), respectively. These composts were used in an experiment with 6 treatments (the 5 composts and a control with mineral fertilization) in a design of randomized blocks with a split plot design. The control and the treatment of 0% biosolid received inorganic nitrogen. All the treatments received the same amount of N, P and K. Two tomato plants were cultivated in each 24 L pot, in a greenhouse at the Technology Department of the Faculdade de Ciências Agrárias e Veterinárias of the Universidade Estadual Paulista in Jaboticabal County, São Paulo State, Brazil. The concentrations of Cu, Mn and Zn were evaluated in the compost 7, 27, 57, 97 and 127 days after composting began, in the soil 0 and 164 days after the compost applied, and in the plants. Compost, soil and plant samples were subjected to digestion with HNO3, H 2O2 and HCl and the metals were determined by AAS. There were positive and significant correlations between Mn in the compost and Mn uptake by the plant (0.46 p>0.05), and between Zn in the compost and Zn concentration in the plant (0.78 p>0.05). Cu, Mn and Zn concentrations increased during composting. The biosolid in the compost supplied Cu and Zn to tomato plants, and the cattle manure supplied Mn to the plants.
Resumo:
In order to evaluate the importance of swine sausages in toxoplasmosis epidemiology, Toxoplasma gondii presence was investigated in 70 samples of the product commercialized in the city of Botucatu-SP. Samples were analyzed by bioassay in mice and DNA amplification by Polymerase Chain Reaction (PCR). Although the parasite was not isolated from any sample in the bioassay, 33 (47.14%) samples were positive in the PCR. These results indicate that swine sausages probably have low importance as a source of infection for human toxoplasmosis in the studied region. Nevertheless, the great number of PCR positive samples shows that the protozoan may be present, but may be inactivated by salt added in sausage manufacture.
Resumo:
In this study, non-nutrient heavy metal concentrations (Cd, Cr, Ni and Pb) were measured in composts during the composting process, in compost/Red-yellow Latosol mixtures, and in tomato plants. Composts were produced using sugar-cane bagasse, biosolids and cattle manure in the proportions 75-0-25, 75-12.5-12.5, 75-25-0, 50-50-0 or 0-100-0 (composts with 0, 12.5, 25, 50 and 100% biosolids). The composts were applied to the soil, in 6 treatments and a control (mineral fertilization). Control and the 0% biosolids treatments received inorganic nitrogen and all the treatments received the same amount of N, P and K. Tomato plants were cultivated in 24-L pots, in a green house in Jaboticabal, SP, Brazil. The experiment had a split plot design, in randomized blocks. Cadmium, Cr, Ni and Pb concentrations were determined during the composting process (7, 27, 57, 97 and 127 days after compost mounting), in soil (0 and 164 days after mixing) and plants. The samples were subjected to digestion with HNO 3, H2O2 and HCl and the metals were determined by AAS. Negative correlations were observed between Cd, Cr and Pb in the compost and Cd, Cr and Pb plant uptake, as well as Ni in the compost and Ni concentration in the plants. The concentrations of Cd, Cr, Ni and Pb increased during composting. Only Cd levels increased when compost was applied to the soil. The roots accumulated Cr, Ni and Pb, the stems and leaves, Cd and Ni and the fruits did not accumulate any of the metals studied. The composts with biosolids did not increase Cd, Cr, Ni and Pb uptake by plants.
Resumo:
After five years of running at RHIC, and on the eve of the LHC heavy-ion program, we highlight the status of femtoscopic measurements. We emphasize the role interferometry plays in addressing fundamental questions about the state of matter created in such collisions, and present an enumerated list of measurements, analyses and calculations that are needed to advance the field in the coming years.
Resumo:
Eight reproductive boars were divided into three groups and inoculated with Toxoplasma gondii [GI (n=3) 1.5×104 oocysts strain P; GII (n=3) 1.0×106 tachyzoites strain RH; and GIII (n=2) non-inoculated control]. Clinical, hematological, parasitemia and serological tests and studies of the parasite in the semen through bioassay and PCR, and in reproductive organs (Bioassay and immunohistochemical analyses) were conducted to evaluate the toxoplasmic infection. Blood and semen were collected on day -2, -1, 1, 3, 5, 7, 9, 11, 14 and weekly up to 84 days post-inoculation (DPI). No clinical or hematimetric alteration was observed in the boars. Parasitemia was detected in one boar inoculated with oocysts at the 7th DPI and in another boar infected with tachyzoites (GII) at the 3rd and 49 th DPI. Serological tests revealed antibodies against T. gondii in animals inoculated with oocysts or tachyzoites at the 7th DPI with dilutions of 1:256 and 1:64, which reached peaks of 1:4096 at day 11 and 9, respectively. The bioassays revealed the presence of the parasite in semen samples of a boar inoculated with oocysts (GI) at 3, 49 and 56 DPI and from two boars infected with tachyzoites (GII), one animal at 5 and two animals at 49 days DPI. Mice inoculated with semen from the control group (GIII) remained serologically negative. PCR analysis showed T. gondii DNA in the semen of Boar 1 and Boar 3 inoculated with tachyzoites and oocysts, respectively. The immunohistochemical tests showed T. gondii in the reproductive organs of Boar 1 and Boar 2, inoculated with tachyzoites and oocysts, respectively. These findings suggest the possible occurrence of venereal transmission of T. gondii in swine.
Resumo:
The heavy metals when linked to organic matter have a behavior in the soil that is still little known. This study aimed to evaluate the effect of sewage-sludge-based composts when incorporated in the soil, in relation to heavy metals availability. Five composts were incorporated using sugar-cane bagasse, sewage sludge and cattle manure in the respective proportions: 75-0-25, 75-12.5-12.5, 75-25-0, 50-50-0 and 0-100-0 (composts with 0, 12.5, 25, 50 and 100% sewage sludge). The experiment consisted of 6 treatments (5 composts and a control with mineral fertilization) in randomized blocks with a split-plot design. The control and the treatment of 0% sewage sludge received inorganic nitrogen (N). All the treatments received the same amount of N (8.33 g) K (5.80 g) and K (8.11 g) per pot. Tomato plants were cultivated in 24.0 L pots in a greenhouse in Jaboticabal, SP, Brazil. The concentrations of heavy metals were determined in the soil samples at day 0 after compost incorporation. The higher the sewage sludge doses, the higher heavy metal contents in the soil. Among extractants, Melhlich-1 extracted the highest amount of heavy metals, while DTPA extracted the lowest one. The residual fraction presented the highest heavy metal content, followed by Fe oxides crystalline and amorphous to Cu, Cr and Mn, and Mn oxides, and Fe amorphous to Zn, indicating strong associations to oxides and clays. There were significant positive correlations between Mn contents in the plant and Mn linked to Fe oxide amorphous and crystalline.
Resumo:
Background & Aims Patients infected with hepatitis C virus (HCV) genotype 1, body weight <85 kg, and high baseline viral load respond poorly to standard doses of pegylated interferon (peginterferon) and ribavirin. We evaluated intensified therapy with peginterferon alfa-2a plus ribavirin. Methods This double-blind randomized trial included HCV genotype 1-infected outpatients from hepatology clinics with body weight <85 kg and HCV RNA titer <400,000 IU/mL. Patients were randomized to 180 μg/wk peginterferon alfa-2a for 48 weeks plus 1200 mg/day ribavirin (standard of care) (group A, n = 191) or 1400/1600 mg/day ribavirin (group B, n = 189). Additional groups included 360 μg/wk peginterferon alfa-2a for 12 weeks then 180 μg/wk peginterferon alfa-2a for 36 weeks plus 1200 mg/day ribavirin (group C, n = 382) or 1400/1600 mg/day ribavirin (group D, n = 383). Follow-up lasted 24 weeks after treatment. Results Sustained virologic response rates (HCV RNA level <15 IU/mL at end of follow-up) in groups A, B, C, and D were 38%, 43%, 44%, and 41%, respectively. There were no significant differences among the 4 groups or between pooled peginterferon alfa-2a regimens (A + B vs C + D: odds ratio [OR], 1.08; 95% confidence interval [CI], 0.831.39; P = .584) or pooled ribavirin regimens (A + C vs B + D: OR, 1.00; 95% CI, 0.791.28; P = .974). Conclusions In patients infected with HCV genotype 1 who are difficult to treat (high viral load, body weight <85 kg), a 12-week induction regimen of peginterferon alfa-2a and/or higher-dose ribavirin is not more effective than the standard regimen. © 2010 AGA Institute.
Resumo:
We investigate the scattering of heavy-light K and D mesons by nucleons at low energies. The short-distance part of the interaction is described by quark-gluon interchange and the longdistance part is described by a one-meson-exchange model that includes the contributions of vector (ρ, ω) and scalar (σ) mesons. The microscopic quark model incorporates a confining Coulomb potential extracted from lattice QCD simulations and a transverse hyperfine interaction consistent with a finite gluon propagator in the infrared. The derived effective meson-nucleon potential is used in a Lippmann-Schwinger equation to obtain s-wave phase shifts. Our final aim is to set up a theoretical framework that can be extended to finite temperatures and baryon densities. © 2010 American Institute of Physics.
Resumo:
The effects of posthatch fasting on villi height and number, crypt depth and number of globet cells in duodenum, jejunum and ileum of broiler chicks from heavy and light eggs were compared. The 2×3×3 factorial design (egg weight: light and heavy eggs; treatments: with water and feed, with water, without water and feed; treatment duration: 24, 48 and 72 h) was used. The villi presented higher size in chicks from heavy than from light eggs. The fasting resulted in lower villi in duodenum (at 48 h), jejunum and ileum (at 72 h). The villi number increased in duodenum and jejunum of chicks from light eggs and only in jejunum of chicks from heavy eggs, but the increase was more accented in chicks from light ones. The fasting reduced the globet cells number in jejunum. Water intake avoided the fasting effects on villi height but had no effect on villi number. Chicks from heavy eggs fed with water and ration presented deeper crypts in all regions of the small intestine. The duodenum and ileum crypt depth of the chicks from heavy eggs reduced when they were submitted to fasting and when they were fed only with water. The results showed that chicks from light eggs were more affected than chicks from heavy eggs. The water intake partially avoided the fasting effects. © Asian Network for Scientific Information, 2011.
Resumo:
We critically review the validity of heavy-quark spin and flavor symmetries in heavy-light decay constants, form factors and effective couplings obtained within a nonperturbative framework, the ingredients of which are all motivated by Dyson-Schwinger equations studies of QCD. Along the way, we make new predictions for two effective nonphysical couplings: gDsDK = 24.1-1.6 +2.5 and gBsBK = 33.3 -3.7 +4.0. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.
Resumo:
The objective of this study was to develop and evaluate a mathematical model used to estimate the daily amino acid requirements of individual growing-finishing pigs. The model includes empirical and mechanistic model components. The empirical component estimates daily feed intake (DFI), BW, and daily gain (DG) based on individual pig information collected in real time. Based on DFI, BW, and DG estimates, the mechanistic component uses classic factorial equations to estimate the optimal concentration of amino acids that must be offered to each pig to meet its requirements. The model was evaluated with data from a study that investigated the effect of feeding pigs with a 3-phase or daily multiphase system. The DFI and BW values measured in this study were compared with those estimated by the empirical component of the model. The coherence of the values estimated by the mechanistic component was evaluated by analyzing if it followed a normal pattern of requirements. Lastly, the proposed model was evaluated by comparing its estimates with those generated by the existing growth model (InraPorc). The precision of the proposed model and InraPorc in estimating DFI and BW was evaluated through the mean absolute error. The empirical component results indicated that the DFI and BW trajectories of individual pigs fed ad libitum could be predicted 1 d (DFI) or 7 d (BW) ahead with the average mean absolute error of 12.45 and 1.85%, respectively. The average mean absolute error obtained with the InraPorc for the average individual of the population was 14.72% for DFI and 5.38% for BW. Major differences were observed when estimates from InraPorc were compared with individual observations. The proposed model, however, was effective in tracking the change in DFI and BW for each individual pig. The mechanistic model component estimated the optimal standardized ileal digestible Lys to NE ratio with reasonable between animal (average CV = 7%) and overtime (average CV = 14%) variation. Thus, the amino acid requirements estimated by model are animal- and time-dependent and follow, in real time, the individual DFI and BW growth patterns. The proposed model can follow the average feed intake and feed weight trajectory of each individual pig in real time with good accuracy. Based on these trajectories and using classical factorial equations, the model makes it possible to estimate dynamically the AA requirements of each animal, taking into account the intake and growth changes of the animal. © 2012 American Society of Animal Science. All rights reserved.
Resumo:
Background: Early trauma care is dependent on subjective assessments and sporadic vital sign assessments. We hypothesized that near-infrared spectroscopy-measured cerebral oxygenation (regional oxygen saturation [rSO 2]) would provide a tool to detect cardiovascular compromise during active hemorrhage. We compared rSO 2 with invasively measured mixed venous oxygen saturation (SvO2), mean arterial pressure (MAP), cardiac output, heart rate, and calculated pulse pressure. Methods: Six propofol-anesthetized instrumented swine were subjected to a fixed-rate hemorrhage until cardiovascular collapse. rSO 2 was monitored with noninvasively measured cerebral oximetry; SvO2 was measured with a fiber optic pulmonary arterial catheter. As an assessment of the time responsiveness of each variable, we recorded minutes from start of the hemorrhage for each variable achieving a 5%, 10%, 15%, and 20% change compared with baseline. Results: Mean time to cardiovascular collapse was 35 minutes ± 11 minutes (54 ± 17% total blood volume). Cerebral rSO 2 began a steady decline at an average MAP of 78 mm Hg ± 17 mm Hg, well above the expected autoregulatory threshold of cerebral blood flow. The 5%, 10%, and 15% decreases in rSO 2 during hemorrhage occurred at a similar times to SvO2, but rSO 2 lagged 6 minutes behind the equivalent percentage decreases in MAP. There was a higher correlation between rSO 2 versus MAP (R =0.72) than SvO2 versus MAP (R =0.55). Conclusions: Near-infrared spectroscopy- measured rSO 2 provided reproducible decreases during hemorrhage that were similar in time course to invasively measured cardiac output and SvO2 but delayed 5 to 9 minutes compared with MAP and pulse pressure. rSO 2 may provide an earlier warning of worsening hemorrhagic shock for prompt interventions in patients with trauma when continuous arterial BP measurements are unavailable. © 2012 Lippincott Williams & Wilkins.
Resumo:
Results are presented from a search for heavy bottom-like quarks, pair-produced in pp collisions at √s = 7TeV, undertaken with the CMS experiment at the LHC. The b′ quarks are assumed to decay exclusively to tW. The b′b̄′ → tW-t̄W+ process can be identified by its distinctive signatures of three leptons or two leptons of same charge, and at least one b-quark jet. Using a data sample corresponding to an integrated luminosity of 4.9 fb-1, observed events are compared to the standard model background predictions, and the existence of b′ quarks having masses below 611 GeV/c2 is excluded at 95% confidence level.
Resumo:
Publicado separadamente en cada idioma
Resumo:
The objective of this research was the preparation of a silsesquioxane functionalized with eight chloropropyl chains (T8-PrCl) and of a new derivative functionalized with a pendant linear chain (2-amino-1,3,4-thiadiazole - ATD; T8-Pr-ATD). The two nanostructured materials were characterized by 13C and 29Si NMR, FTIR and elemental analysis. The new nanostructured material, octakis[3-(2-amino-1,3,4-thiadiazole)propyl] octasilsesquioxane (T8-Pr-ATD), was tested as a ligand for transition-metal ions with a special attention to adsorption isotherms. The adsorption was performed using a batchwise process and the organofunctionalized surface showed the ability to adsorb the metal ions Cu (II), Co (II), and Ni (II) from water and ethanol. The adsorption isotherms were fitted by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) model. The kinetics of adsorption of metals were performed using three models such as pseudo-first order, pseudo-second order and Elovich. The Langmuir and Elovich models were the most appropriate to describe the adsorption and kinetic data, respectively. Furthermore, the T8-Pr-ATD was successfully applied to the analysis of environmental samples (river and sea water). Subsequently, a new nanomaterial was prepared by functionalization of the T8-Pr-ATD with a Mo (II) organometallic complex (T8-Pr-ATD-Mo). Only a few works in the literature have reported this type of substitution, and none dealt with ATD and Mo (II) complexes. The new Mo-silsesquioxane organometallic nanomaterial was tested as precursor in the epoxidation of cyclooctene and styrene. © 2012 Elsevier B.V.