951 resultados para Heat of hydration.
Resumo:
Extreme climatic events, including heat waves (HWs) and severe storms, influence the structure of marine and terrestrial ecosystems. Despite growing consensus that anthropogenic climate change will increase the frequency, duration and magnitude of extreme events, current understanding of their impact on communities and ecosystems is limited. Here, we used sessile invertebrates on settlement panels as model assemblages to examine the influence of HW magnitude, duration and timing on marine biodiversity patterns. Settlement panels were deployed in a marina in southwest UK for ≥5 weeks, to allow sufficient time for colonisation and development of sessile fauna, before being subjected to simulated HWs in a mesocosm facility. Replicate panel assemblages were held at ambient sea temperature (∼17 °C), or +3 °C or +5 °C for a period of 1 or 2 weeks, before being returned to the marina for a recovery phase of 2–3 weeks. The 10-week experiment was repeated 3 times, staggered throughout summer, to examine the influence of HW timing on community impacts. Contrary to our expectations, the warming events had no clear, consistent impacts on the abundance of species or the structure of sessile assemblages. With the exception of 1 high-magnitude long-duration HW event, warming did not alter not assemblage structure, favour non-native species, nor lead to changes in richness, abundance or biomass of sessile faunal assemblages. The observed lack of effect may have been caused by a combination of (1) the use of relatively low magnitude, realistic heat wave treatments compared to previous studies (2), the greater resilience of mature adult sessile fauna compared to recruits and juveniles, and (3) the high thermal tolerance of the model organisms (i.e., temperate fouling species, principally bryozoans and ascidians). Our study demonstrates the importance of using realistic treatments when manipulating climate change variables, and also suggests that biogeographical context may influence community-level responses to short-term warming events, which are predicted to increase in severity in the future.
Resumo:
The impacts of various climate modes on the Red Sea surface heat exchange are investigated using the MERRA reanalysis and the OAFlux satellite reanalysis datasets. Seasonality in the atmospheric forcing is also explored. Mode impacts peak during boreal winter [December–February (DJF)] with average anomalies of 12–18 W m−2 to be found in the northern Red Sea. The North Atlantic Oscillation (NAO), the east Atlantic–west Russia (EAWR) pattern, and the Indian monsoon index (IMI) exhibit the strongest influence on the air–sea heat exchange during the winter. In this season, the largest negative anomalies of about −30 W m−2 are associated with the EAWR pattern over the central part of the Red Sea. In other seasons, mode-related anomalies are considerably lower, especially during spring when the mode impacts are negligible. The mode impacts are strongest over the northern half of the Red Sea during winter and autumn. In summer, the southern half of the basin is strongly influenced by the multivariate ENSO index (MEI). The winter mode–related anomalies are determined mostly by the latent heat flux component, while in summer the shortwave flux is also important. The influence of the modes on the Red Sea is found to be generally weaker than on the neighboring Mediterranean basin.
Resumo:
Heat stress represents one of the major environmental factors that adversely affect the reproductive performance of cattle. In this paper the behavioral adjustments, physical mechanisms and physiological responses to heat loss are described; bos indicus adaptive advantages with respect to bos Taurus, pathophysiology of heat stress and heat stress effects in animal reproduction, both the male and the female.