958 resultados para Hansen, Collin: The winning helix
Resumo:
We present an overview of our analyses of HiRISE observations of spring evolution of selected dune areas of the north polar erg. The north polar erg is covered annually by seasonal volatile ice layer, a mixture of CO2 and H2O with mineral dust contamination. In spring, this layer sublimes creating visually enigmatic phenomena, e.g. dark and bright fan-shaped deposits, dark–bright–dark bandings, dark down-slope streaks, and seasonal polygonal cracks. Similar phenomena in southern polar areas are believed to be related to the specific process of solid-state greenhouse effect. In the north, it is currently unclear if the solid-state greenhouse effect is able to explain all the observed phenomena especially because the increased influence of H2O on the time scales of this process has not yet been quantified. HiRISE observations of our selected locations show that the ground exhibits a temporal behaviour similar to the one observed in the southern polar areas: a brightening phase starting close to the spring equinox with a subsequent darkening towards summer solstice. The resolution of HiRISE enabled us to study dunes and substrate individually and even distinguish between different developments on windward and slip face sides of single dunes. Differences in the seasonal evolution between steep slip faces and flatter substrate and windward sides of dunes have been identified and compared to CRISM data of CO2 and H2O distributions on dunes. We also observe small scale dark blotches that appear in early observations and tend to sustain a low reflectivity throughout the spring. These blotches can be regarded as the analogue of dark fan deposits in southern polar areas, leading us to the conclusion that both martian polar areas follow similar spring evolutions.
Resumo:
We analyze a series of targeted CRISM and HiRISE observations of seven regions of interest at high latitudes in the Northern polar regions of Mars. These data allow us to investigate the temporal evolution of the composition of the seasonal ice cap during spring, with a special emphasis on peculiar phenomena occurring in the dune fields and in the vicinity of the scarps of the North Polar Layered Deposits (NPLDs). The strength of the spectral signature of CO2 ice continuously decreases during spring whereas the one of H2O ice first shows a strong increase until Ls = 50°. This evolution is consistent with a scenario previously established from analysis of OMEGA data, in which a thin layer of pure H2O ice progressively develops at the surface of the volatile layer. During early spring (Ls < 10°), widespread jet activity is observed by HiRISE while strong spectral signatures of CO2 ice are detected by CRISM. Later, around Ls = 20-40°, activity concentrates at the dune fields where CRISM also detects a spectral enrichment in CO2 ice, consistent with "Kieffer's model" (Kieffer, H.H. [2007]. J. Geophys. Res. 112, E08005. doi:10.1029/2006JE002816) for jet activity. Effects of wind are prominent across the dune fields and seem to strongly influence the sublimation of the volatile layer. Strong winds blowing down the scarps could also be responsible for the significant spatial and temporal variability of the surface ice composition observed close to the NPLD.
Resumo:
Paleoecology can provide valuable insights into the ecology of species that complement observation and experiment-based assessments of climate impact dynamics. New paleoecological records (e.g., pollen, macrofossils) from the Italian Peninsula suggest a much wider climatic niche of the important European tree species Abies alba (silver fir) than observed in its present spatial range. To explore this discrepancy between current and past distribution of the species, we analyzed climatic data (temperature, precipitation, frost, humidity, sunshine) and vegetation-independent paleoclimatic reconstructions (e.g., lake levels, chironomids) and use global coupled carbon-cycle climate (NCAR CSM1.4) and dynamic vegetation (LandClim) modeling. The combined evidence suggests that during the mid-Holocene (6000 years ago), prior to humanization of vegetation, A. alba formed forests under conditions that exceeded the modern (1961-1990) upper temperature limit of the species by 5-7°C (July means). Annual precipitation during this natural period was comparable to today (>700-800 mm), with drier summers and wetter winters. In the meso-Mediterranean to sub-Mediterranean forests A. alba co-occurred with thermophilous taxa such as Quercus ilex, Q. pubescens, Olea europaea, Phillyrea, Arbutus, Cistus, Tilia, Ulmus, Acer, Hedera helix, Ilex aquifolium, Taxus, and Vitis. Results from the last interglacial (ca. 130 000-115 000 BP), when human impact was negligible, corroborate the Holocene evidence. Thermophilous Mediterranean A. alba stands became extinct during the last 5000 years when land-use pressure and specifically excessive anthropogenic fire and browsing disturbance increased. Our results imply that the ecology of this key European tree species is not yet well understood. On the basis of the reconstructed realized climatic niche of the species, we anticipate that the future geographic range of A. alba may not contract regardless of migration success, even if climate should become significantly warmer than today with summer temperatures increasing by up to 5-7°C, as long as precipitation does not fall below 700-800 mm/yr, and anthropogenic disturbance (e.g., fire, browsing) does not become excessive. Our finding contradicts recent studies that projected range contractions under global-warming scenarios, but did not factor how millennia of human impacts reduced the realized climatic niche of A. alba.
Resumo:
We validate, extend, and empirically and theoretically criticize the cultural dimension of humane orientation of the project GLOBE (Global Leadership and Organizational Behavior Effectiveness Research Program). Theoretically, humane orientation is not just a one-dimensionally positive concept about being caring, altruistic, and kind to others as discussed by Kabasakal and Bodur (2004), but there is also a certain ambivalence to this concept. We suggest differentiating humane orientation toward in-group members from humane orientation toward out-group members. A multicountry construct validation study used student samples from 25 countries that were either high or low in humane orientation (N = 876) and studied their relation to the traditional GLOBE scale and other cultural-level measures (agreeableness, religiosity, authoritarianism, and welfare state score). Findings revealed a strong correlation between humane orientation and agreeableness, welfare state score, and religiosity. Out-group humane orientation proved to be the more relevant subfacet of the original humane orientation construct, suggesting that future research on humane orientation should make use of this measure instead of the vague original scale. The ambivalent character of out-group humane orientation is displayed in its positive correlation to high authoritarianism. Patriotism was used as a control variable for noncritical acceptance of one’s society but did not change the correlations. Our findings are discussed as an example of how rigid expectations and a lack of tolerance for diversity may help explain the ambivalent nature of humane orientation
Resumo:
Transcription enhancer factor 1 is essential for cardiac, skeletal, and smooth muscle development and uses its N-terminal TEA domain (TEAD) to bind M-CAT elements. Here, we present the first structure of TEAD and show that it is a three-helix bundle with a homeodomain fold. Structural data reveal how TEAD binds DNA. Using structure-function correlations, we find that the L1 loop is essential for cooperative loading of TEAD molecules on to tandemly duplicated M-CAT sites. Furthermore, using a microarray chip-based assay, we establish that known binding sites of the full-length protein are only a subset of DNA elements recognized by TEAD. Our results provide a model for understanding the regulation of genome-wide gene expression during development by TEA/ATTS family of transcription factors.
Resumo:
We present crystal structures of the Anabaena sensory rhodopsin transducer (ASRT), a soluble cytoplasmic protein that interacts with the first structurally characterized eubacterial retinylidene photoreceptor Anabaena sensory rhodopsin (ASR). Four crystal structures of ASRT from three different spacegroups were obtained, in all of which ASRT is present as a planar (C4) tetramer, consistent with our characterization of ASRT as a tetramer in solution. The ASRT tetramer is tightly packed, with large interfaces where the well-structured beta-sandwich portion of the monomers provides the bulk of the tetramer-forming interactions, and forms a flat, stable surface on one side of the tetramer (the beta-face). Only one of our four different ASRT crystals reveals a C-terminal alpha-helix in the otherwise all-beta protein, together with a large loop from each monomer on the opposite face of the tetramer (the alpha-face), which is flexible and largely disordered in the other three crystal forms. Gel-filtration chromatography demonstrated that ASRT forms stable tetramers in solution and isothermal microcalorimetry showed that the ASRT tetramer binds to ASR with a stoichiometry of one ASRT tetramer per one ASR photoreceptor with a K(d) of 8 microM in the highest affinity measurements. Possible mechanisms for the interaction of this transducer tetramer with the ASR photoreceptor via its flexible alpha-face to mediate transduction of the light signal are discussed.
Resumo:
OBJECTIVE: This report presents data from the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network on care of and morbidity and mortality rates for very low birth weight infants, according to gestational age (GA). METHODS: Perinatal/neonatal data were collected for 9575 infants of extremely low GA (22-28 weeks) and very low birth weight (401-1500 g) who were born at network centers between January 1, 2003, and December 31, 2007. RESULTS: Rates of survival to discharge increased with increasing GA (6% at 22 weeks and 92% at 28 weeks); 1060 infants died at CONCLUSION: Although the majority of infants with GAs of >or=24 weeks survive, high rates of morbidity among survivors continue to be observed.
Resumo:
Vesicular stomatitis virus (VSV) is a bullet-shaped rhabdovirus and a model system of negative-strand RNA viruses. Through direct visualization by means of cryo-electron microscopy, we show that each virion contains two nested, left-handed helices: an outer helix of matrix protein M and an inner helix of nucleoprotein N and RNA. M has a hub domain with four contact sites that link to neighboring M and N subunits, providing rigidity by clamping adjacent turns of the nucleocapsid. Side-by-side interactions between neighboring N subunits are critical for the nucleocapsid to form a bullet shape, and structure-based mutagenesis results support this description. Together, our data suggest a mechanism of VSV assembly in which the nucleocapsid spirals from the tip to become the helical trunk, both subsequently framed and rigidified by the M layer.
Resumo:
Pathogenic streptococci and enterococci primarily rely on the conserved secretory (Sec) pathway for the translocation and secretion of virulence factors out of the cell. Since many secreted virulence factors in gram-positive organisms are subsequently attached to the bacterial cell surface via sortase enzymes, we sought to investigate the spatial relationship between secretion and cell wall attachment in Enterococcus faecalis. We discovered that sortase A (SrtA) and sortase C (SrtC) are colocalized with SecA at single foci in the enterococcus. The SrtA-processed substrate aggregation substance accumulated in single foci when SrtA was deleted, implying a single site of secretion for these proteins. Furthermore, in the absence of the pilus-polymerizing SrtC, pilin subunits also accumulate in single foci. Proteins that localized to single foci in E. faecalis were found to share a positively charged domain flanking a transmembrane helix. Mutation or deletion of this domain in SrtC abolished both its retention at single foci and its function in efficient pilus assembly. We conclude that this positively charged domain can act as a localization retention signal for the focal compartmentalization of membrane proteins.
Resumo:
Statistical physicists assume a probability distribution over micro-states to explain thermodynamic behavior. The question of this paper is whether these probabilities are part of a best system and can thus be interpreted as Humean chances. I consider two strategies, viz. a globalist as suggested by Loewer, and a localist as advocated by Frigg and Hoefer. Both strategies fail because the system they are part of have rivals that are roughly equally good, while ontic probabilities should be part of a clearly winning system. I conclude with the diagnosis that well-defined micro-probabilities under-estimate the robust character of explanations in statistical physics.
Resumo:
Recently, a family of muscle-specific regulatory factors that includes myogenin, myoD, myf-5, and MRF-4 has been identified. They share a high degree of homology within a region that contains a basic and helix-loop-helix domain. Transfection of many non-muscle cell types with any one of these genes results in the activation of the entire myogenic program. To explore the mechanism through which myogenin regulates myogenesis, we have prepared antibodies against peptides specific to myogenin. Using these antibodies we show that myogenin is a 32 Kd phospho-protein which is localized to the nuclei of muscle cells. In vitro, myogenin oligomerizes with the ubiquitous enhancer binding factor E12, and acquires high affinity for an element of the core of the muscle creatine kinase (MCK) enhancer that is conserved among many muscle-specific genes. Myogenin synthesized in BC$\sb3$H1 and C2 muscle cell lines also binds to the same site in the enhancer. However, the MCK enhancer is not activated in 10T1/2 fibroblasts which have been transfected with a constitutive myogenin expression vector until growth factors have been removed from the media. This result indicates that mitogenic signals block the actions of myogenin.. Mutagenesis of the myogenin/E12 binding site in the MCK enhancer abolishes binding of the hetero-oligomer and prevents trans-activation of the enhancer by myogenin. By site directed mutagenesis of myogenin we have shown that the basic region consists of three clusters of basic residues, two of which are required for binding and activation of the myogenic program. Myogenic activation, but not DNA binding, is lost when the 10 residue region between the two required basic clusters is substituted with the corresponding region from E12, which also contains a similar basic and helix-loop-helix domain. Functional revertants of this substitution mutant have identified two amino acids which confer muscle specificity. The properties of myogenin suggest that it functions as a sequence-specific DNA binding factor that interacts directly with muscle-specific genes during myogenesis and contains within its basic domain a region which imparts myogenic activation and is separable from DNA binding. ^
Resumo:
Contraction of vertebrate cardiac muscle is regulated by the binding of Ca$\sp{2+}$ to the troponin C (cTnC) subunit of the troponin complex. In this study, we have used site-directed mutagenesis and a variety of assay techniques to explore the functional roles of regions in cTnC, including Ca$\sp{2+}$/Mg$\sp{2+}$-binding sites III and IV, the functionally inactive site I, the N-terminal helix, the N-terminal hydrophobic pocket and the two cysteine residues with regard to their ability to form disulfide bonds. Conversion of the first Ca$\sp{2+}$ ligand from Asp to Ala inactivated sites III and IV and decreased the apparent affinity of cTnC for the thin filament. Conversion of the second ligand from Asn to Ala also inactivated these sites in the free protein but Ca$\sp{2+}$-binding was recovered upon association with troponin I and troponin T. The Ca$\sp{2+}$-concentrations required for tight thin filament-binding by proteins containing second-ligand mutations were significantly greater than that required for the wild-type protein. Mutation of site I such that the primary sequence was that of an active site with the first Ca$\sp{2+}$ ligand changed from Asp to Ala resulted in a 70% decrease in maximal Ca$\sp{2\sp+}$ dependent ATPase activity in both cardiac and fast skeletal myofibrils. Thus, the primary sequence of the inactive site I in cTnC is functionally important. Major changes in the sequence of the N-terminus had little effect on the ability of cTnC to recover maximal activity but deletion of the first nine residues resulted in a 60 to 80% decrease in maximal activity with only a minor decrease in the pCa$\sb{50}$ of activation, suggesting that the N-terminal helix must be present but that a specific sequence is not required. The formation of an inter- or intramolecular disulfide bonds caused the exposure of hydrophobic surfaces on cTnC and rendered the protein Ca$\sp{2+}$ independent. Finally, elution patterns from a hydrophobic interactions column suggest that cTnC undergoes a significant change in hydrophobicity upon Ca$\sp{2+}$ binding, the majority of which is caused by site II. These latter data show an interesting correlation between exposure of hydrophobic surfaces on and activation of cTnC. Overall, these results represent significant progress toward the elucidation of the functional roles of a variety of structural regions in cTnC. ^
Resumo:
Class I major histocompatibility complex (MHC) molecules induce either accelerated rejection or prolonged survival of allografts, presumably because of the presence of immunogenic or tolerogenic epitopes, respectively. To explore the molecular basis of this phenomenon, three chimeric class I molecules were constructed by substituting the rat class I RT1.A$\sp{\rm a}$ sequences with the N-terminus of HLA-A2.1 (N$\sp{\rm HLA-A2.1}$-RT1.A$\sp{\rm a}$), the $\alpha\sb1$ helix (h) with $\rm\alpha\sb{1h}\sp{u}$ sequences ( ($\rm\alpha\sb{1h}\sp{u}$) -RT1.A$\sp{\rm a}$) or the entire $\alpha\sb2$ domain (d) with $\rm\alpha\sb{2d}\sp{u}$ sequences ( ($\rm\alpha\sb{2d}\sp{u}$) -RT1.A$\sp{\rm a}$). Wild type (WT) and chimeric cDNAs were sequenced prior to transfection into Buffalo (BUF; RT1$\sp{\rm b}$) hepatoma cells. Stable transfectants were injected subcutaneously (s.c.) into different hosts 7 days prior to challenge with a heart allograft. In BUF hosts, chimeric ($\rm\alpha\sb{1h}\sp{u}$) -RT1.A$\sp{\rm a}$ accelerated the rejection of Wistar Furth (WF; RT1$\sp{\rm u}$) heart allografts, but had no effect on the survival of ACI (RT1$\sp{\rm a}$) grafts. In contrast, the ($\rm\alpha\sb{2d}\sp{u}$) -RT1.A$\sp{\rm a}$ (containing $\rm\alpha\sb{1d}\sp{a}$ sequences) immunized BUF recipients toward RT1$\sp{\rm a}$ grafts. In WF hosts, WT-RT1.A$\sp{\rm a}$ was a potent immunogen and accelerated ACI graft rejection, N$\sp{\rm HLA-A2.1}$-RT1.A$\sp{\rm a}$ was less effective and ($\rm\alpha\sb{\rm 1h}\sp{u}\rbrack$-RT1.A$\sp{\rm a}$ was not immunogenic. Thus, dominant and subdominant epitopes inducing in vivo sensitization to cardiac allografts are present in the $\alpha\sb1$ helix and the N-terminus, respectively. The failure of ($\rm\alpha\sb{2d}\sp{u}$) -RT1.A$\sp{\rm a}$ transfectants (containing recipient-type $\alpha\sb{\rm 2d}$ sequences) to sensitize WF hosts toward ACI (RT1$\sp{\rm a}$) grafts, despite the presence of donor-type immunogenic $\alpha\sb{\rm 1d}\sp{\rm a}$, suggests that "self-$\alpha\sb2$" sequences displayed on chimeric antigens interfere with immunogenicity. The ($\rm\alpha\sb{1h}\sp{u}$) -RT1.A$\sp{\rm a}$ transfectants injected s.c. prolonged the survival of WF (RT1$\sp{\rm u}$) hearts in ACI (RT1$\sp{\rm a}$) recipients. Furthermore, intra-portal injection of extracts from ($\rm\alpha\sb{1h}\sp{u}$) -RT1.A$\sp{\rm a}$, but not WT-RT1.A$\sp{\rm a}$ or RT1.A$\sp{\rm u}$, in conjunction with a brief cyclosporine course rendered ACI hosts permanently and specifically tolerant to donor-type WF cardiac allografts. Thus, immunodominant allodeterminants are present in the $\alpha\sb1$, but not the $\alpha\sb2$, domain of rat class I MHC molecules. Furthermore, the $\rm\alpha\sb{1h}\sp{u}$ immunogenic epitopes trigger tolerogenic responses when flanked by host-type N-terminal$\sp{\rm a}$ and $\rm\alpha\sb{2d}\sp{a}$ sequences. ^
Resumo:
An important question in biology is to understand the role of specific gene products in regulating embryogenesis and cellular differentiation. Many of the regulatory proteins possess specific motifs, such as the homeodomain, basic helix-loop-helix structure, zinc finger, and leucine zipper. These sequence motifs participate in specific protein-DNA, protein-RNA, and protein-protein interactions, and are important for the function of these regulatory proteins.^ The human rfp (ret finger protein) belongs to a novel zinc finger protein family, the B box zinc finger family. Most of the B box proteins, including rfp, have a conserved tripartite motif, consisting of two novel zinc fingers (the RING finger and the B box) and a coiled-coil domain. Interestingly, a fusion protein between the tripartite motif of rfp and the tyrosine kinase domain of c-ret has transforming activity. In this study, we examined the expression of rfp during mouse development, and characterized the role of the tripartite motif in rfp function.^ We cloned the mouse rfp cDNA, which shares a 98.4% homology with the human sequence at amino acid level. Such strikingly high degree of homology indicates the high evolutionary pressure on the conservation of the sequence, suggesting that rfp may have an important function. Using the somatic cell hybrid system, we assigned the rfp gene to mouse chromosome 13 and human chromosome 6. Rfp transcripts and protein were ubiquitous in day 10.5-13.5 mouse embryos; however, they were restricted in adult mice, with the highest level of expression in the testis. Rfp expression in the testis is detected only in late pachytene spermatocytes and round spermatids. In both embryos and spermatogenic cells, rfp protein was distributed within cell nuclei in a punctate pattern, similar to the PODs (PML oncogenic domains) observed with another B box protein, PML. In cultured mammalian cells, we found that rfp was indeed co-localized to the PODs with PML. Using the yeast two-hybrid system, we showed that the rfp could specifically interact with PML, and that the interaction was dependent on the distal portion of the rfp coiled-coil domain.^ We also showed that rfp could form homodimers, and both the B box and coiled-coil domain were required for proper dimerization. It seems that the proximal portion of the coiled-coil domain provides the interacting interface, while the B box zinc finger orients the coil and maintains the correct structure of the whole molecule. Our data are consistent with the zinc-binding property and structural analysis of the B box. The RING finger seems to be involved in rfp nuclear localization through interaction with other proteins. We believe that homodimerization and interaction with PML are important for the normal interaction of rfp during development and differentiation. In addition, rfp homodimerization may also be essential for the oncogenic activation of the rfp-ret fusion protein. ^
Resumo:
Sensory rhodopsins I and II (SRI and SRII) are visual pigment-like phototaxis receptors in the archaeon Halobacterium salinarum. The receptor proteins each consist of a single polypeptide that folds into 7 $\alpha$-helical membrane-spanning segments forming an internal pocket where the chromophore retinal is bound. They transmit signals to their tightly bound transducer proteins, HtrI and HtrII, respectively, which in turn control a phosphotransfer pathway modulating the flagellar motors. SRI-HtrI mediates attractant responses to orange-light and repellent responses to UV light, while SRII-HtrII mediates repellent response to blue light. Experiments were designed to analyze the molecular processes in the SR-Htr complexes responsible for receptor activation, which previously had been shown by our laboratory to involve proton transfer reactions of the retinylidene Schiff base in the photoactive site, transfer of signals from receptor to transducer, and signaling specificity by the receptor-transducer complex.^ Site-directed mutagenesis and laser-flash kinetic spectroscopy revealed that His-166 in SRI (i) plays a role in the proton transfers both to and from the Schiffbase, either as a structurally critical residue or possibly as a direct participant, (ii) is involved in the modulation of SIU photoreaction kinetics by HtrI, and (iii) modulates the pKa of Asp-76, an important residue in the photoactive site, through a long-distance electrostatic interaction. Computerized cell tracking and motion analysis demonstrated that (iv) His-166 is crucial in phototaxis signaling: a spectrum of substitutions either eliminate signaling or greatly perturb the activation process that produces attractant and repellent signaling states of the receptor.^ The signaling states of SRI are communicated to HtrI, whose oligomeric structure and conformational changes were investigated by engineered sulfhydryl probes. It was found that signaling by the SRI-HtrI complex involves reversible conformational changes within a preexisting HtrI dimer, which is likely accomplished through a slight winding or unwinding of the two HtrT monomers via their loose coiled coil association. To elucidate which domains of the Htr dimers confer specificity for interaction with SRI or SRII, chimeras of HtrI and HtrII were constructed. The only determinant needed for functional and specific interaction with SRI or SRII was found to be the four transmembrane segments of the HtrI or HtrII dimers, respectively. The entire cytoplasmic parts of HtrI and HtrII, which include the functionally important signaling and adaptation domains, were interchangeable.^ These observations support a model in which SRI and SRII undergo conformational changes coupled to light-induced proton transfers in their photoactive sites, and that lateral helix-helix interactions with their cognate transducers' 4-helix bundle in the membrane relay these conformational changes into different states of the Htr proteins which regulate the down-stream phosphotransfer pathway. ^