992 resultados para Haney, Tom
Resumo:
The objective of this study was to report for the first time infection by Hepatozoon spp. and Babesia spp. in 10 dogs from the city of Cuiabá, State of Mato Grosso, central-western Brazil. A pair of primers that amplifies a 574 bp fragment of the 18S rRNA of Hepatozoon spp., and a pair of primers that amplifies a 551 bp fragment of the gene 18S rRNA for Babesia spp. were used. Six dogs were positive for Babesia spp., and 9 were positive for Hepatozoon spp. Co-infection of Babesia spp. and Hepatozoon spp. was seen in 5 dogs. Sequenced samples revealed 100% identity with B. canis vogeli, and H. canis. This is the first molecular detection of H. canis in domestic dogs from Cuiabá. Additionally, it is described for the first time the presence of B. canis vogeli circulating among dogs in Cuiabá.
Resumo:
Background: Acid soils comprise up to 50% of the world's arable lands and in these areas aluminum (Al) toxicity impairs root growth, strongly limiting crop yield. Food security is thereby compromised in many developing countries located in tropical and subtropical regions worldwide. In sorghum, SbMATE, an Al-activated citrate transporter, underlies the Alt(SB) locus on chromosome 3 and confers Al tolerance via Al-activated root citrate release. Methodology: Population structure was studied in 254 sorghum accessions representative of the diversity present in cultivated sorghums. Al tolerance was assessed as the degree of root growth inhibition in nutrient solution containing Al. A genetic analysis based on markers flanking Alt(SB) and SbMATE expression was undertaken to assess a possible role for Alt(SB) in Al tolerant accessions. In addition, the mode of gene action was estimated concerning the Al tolerance trait. Comparisons between models that include population structure were applied to assess the importance of each subpopulation to Al tolerance. Conclusion/Significance: Six subpopulations were revealed featuring specific racial and geographic origins. Al tolerance was found to be rather rare and present primarily in guinea and to lesser extent in caudatum subpopulations. Alt(SB) was found to play a role in Al tolerance in most of the Al tolerant accessions. A striking variation was observed in the mode of gene action for the Al tolerance trait, which ranged from almost complete recessivity to near complete dominance, with a higher frequency of partially recessive sources of Al tolerance. A possible interpretation of our results concerning the origin and evolution of Al tolerance in cultivated sorghum is discussed. This study demonstrates the importance of deeply exploring the crop diversity reservoir both for a comprehensive view of the dynamics underlying the distribution and function of Al tolerance genes and to design efficient molecular breeding strategies aimed at enhancing Al tolerance.
Resumo:
FAPESP
Resumo:
Repeated exposure of rabbits and other animals to ticks results in acquired resistance or immunity to subsequent tick bites and is partially elicited by antibodies directed against tick antigens. In this study we demonstrate the utility of a yeast surface display approach to identify tick salivary antigens that react with tick-immune serum. We constructed an Ixodes scapularis nymphal salivary gland yeast surface display library and screened the library with nymph-immune rabbit sera and identified five salivary antigens. Four of these proteins, designated P8, P19, P23 and P32, had a predicted signal sequence. We generated recombinant (r) P8, P19 and P23 in a Drosophila expression system for functional and immunization studies. rP8 showed anti-complement activity and rP23 demonstrated anti-coagulant activity. Ixodes scapularis feeding was significantly impaired when nymphs were fed on rabbits immunized with a cocktail of rP8, rP19 and rP23, a hall mark of tick-immunity. These studies also suggest that these antigens may serve as potential vaccine candidates to thwart tick feeding.
Resumo:
Stingless bees play an important ecological role as pollinators of many wild plant species in the tropics and have significant potential for the pollination of agricultural crops. Nevertheless, conservation efforts as well as commercial breeding programmes require better guidelines on the amount of genetic variation that is needed to maintain viable populations. In this context, we carried out a long-term genetic study on the stingless bee Melipona scutellaris to evaluate the population viability consequences of prolonged breeding from a small number of founder colonies. In particular, it was artificially imposed a genetic bottleneck by setting up a population starting from only two founder colonies, and continued breeding from it for a period of over 10 years in a location outside its natural area of occurrence. We show that despite a great reduction in the number of alleles present at both neutral microsatellite loci and the sex-determining locus relative to its natural source population, and an increased frequency in the production of sterile diploid males, the genetically impoverished population could be successfully bred and maintained for at least 10 years. This shows that in stingless bees, breeding from a small stock of colonies may have less severe consequences than previously suspected. In addition, we provide a simulation model to determine the number of colonies that are needed to maintain a certain number of sex alleles in a population, thereby providing useful guidelines for stingless bee breeding and conservation efforts.
Resumo:
Insect societies are well-known for their advanced cooperation, but their colonies are also vulnerable to reproductive parasitism. Here, we present a novel example of an intra-specific social parasitism in a highly eusocial bee, the stingless bee Melipona scutellaris. In particular, we provide genetic evidence which shows that, upon loss of the mother queen, many colonies are invaded by unrelated queens that fly in from unrelated hives nearby. The reasons for the occurrence of this surprising form of social parasitism may be linked to the fact that unlike honeybees, Melipona bees produce new queens in great excess of colony needs, and that this exerts much greater selection on queens to seek alternative reproductive options, such as by taking over other nests. Overall, our results are the first to demonstrate that queens in highly eusocial bees can found colonies not only via supersedure or swarming, but also by infiltrating and taking over other unrelated nests.
Resumo:
Compliant mechanisms can achieve a specified motion as a mechanism without relying on the use of joints and pins. They have broad application in precision mechanical devices and Micro-Electro Mechanical Systems (MEMS) but may lose accuracy and produce undesirable displacements when subjected to temperature changes. These undesirable effects can be reduced by using sensors in combination with control techniques and/or by applying special design techniques to reduce such undesirable effects at the design stage, a process generally termed ""design for precision"". This paper describes a design for precision method based on a topology optimization method (TOM) for compliant mechanisms that includes thermal compensation features. The optimization problem emphasizes actuator accuracy and it is formulated to yield optimal compliant mechanism configurations that maximize the desired output displacement when a force is applied, while minimizing undesirable thermal effects. To demonstrate the effectiveness of the method, two-dimensional compliant mechanisms are designed considering thermal compensation, and their performance is compared with compliant mechanisms designs that do not consider thermal compensation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Tailoring specified vibration modes is a requirement for designing piezoelectric devices aimed at dynamic-type applications. A technique for designing the shape of specified vibration modes is the topology optimization method (TOM) which finds an optimum material distribution inside a design domain to obtain a structure that vibrates according to specified eigenfrequencies and eigenmodes. Nevertheless, when the TOM is applied to dynamic problems, the well-known grayscale or intermediate material problem arises which can invalidate the post-processing of the optimal result. Thus, a more natural way for solving dynamic problems using TOM is to allow intermediate material values. This idea leads to the functionally graded material (FGM) concept. In fact, FGMs are materials whose properties and microstructure continuously change along a specific direction. Therefore, in this paper, an approach is presented for tailoring user-defined vibration modes, by applying the TOM and FGM concepts to design functionally graded piezoelectric transducers (FGPT) and non-piezoelectric structures (functionally graded structures-FGS) in order to achieve maximum and/or minimum vibration amplitudes at certain points of the structure, by simultaneously finding the topology and material gradation function. The optimization problem is solved by using sequential linear programming. Two-dimensional results are presented to illustrate the method.
Resumo:
The `biomimetic` approach to tissue engineering usually involves the use of a bioreactor mimicking physiological parameters whilst supplying nutrients to the developing tissue. Here we present a new heart valve bioreactor, having as its centrepiece a ventricular assist device (VAD), which exposes the cell-scaffold constructs to a wider array of mechanical forces. The pump of the VAD has two chambers: a blood and a pneumatic chamber, separated by an elastic membrane. Pulsatile air-pressure is generated by a piston-type actuator and delivered to the pneumatic chamber, ejecting the fluid in the blood chamber. Subsequently, applied vacuum to the pneumatic chamber causes the blood chamber to fill. A mechanical heart valve was placed in the VAD`s inflow position. The tissue engineered (TE) valve was placed in the outflow position. The VAD was coupled in series with a Windkessel compliance chamber, variable throttle and reservoir, connected by silicone tubings. The reservoir sat on an elevated platform, allowing adjustment of ventricular preload between 0 and 11 mmHg. To allow for sterile gaseous exchange between the circuit interior and exterior, a 0.2 mu m filter was placed at the reservoir. Pressure and flow were registered downstream of the TE valve. The circuit was filled with culture medium and fitted in a standard 5% CO(2) incubator set at 37 degrees C. Pressure and flow waveforms were similar to those obtained under physiological conditions for the pulmonary circulation. The `cardiomimetic` approach presented here represents a new perspective to conventional biomimetic approaches in TE, with potential advantages. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Fruit-set in tomato (Solanum lycopersicum) depends on gibberellins and auxins (GAs). Here, we show, using the cv MicroTom, that application of N-1-naphthylphthalamic acid (NPA; an inhibitor of auxin transport) to unpollinated ovaries induced parthenocarpic fruit-set, associated with an increase of indole-3-acetic acid (IAA) content, and that this effect was negated by paclobutrazol (an inhibitor of GA biosynthesis). NPA-induced ovaries contained higher content of GA(1) (an active GA) and transcripts of GA biosynthetic genes (SlCPS, SlGA20ox1, and -2). Interestingly, application of NPA to pollinated ovaries prevented their growth, potentially due to supraoptimal IAA accumulation. Plant decapitation and inhibition of auxin transport by NPA from the apical shoot also induced parthenocarpic fruit growth of unpollinated ovaries. Application of IAA to the severed stump negated the plant decapitation effect, indicating that the apical shoot prevents unpollinated ovary growth through IAA transport. Parthenocarpic fruit growth induced by plant decapitation was associated with high levels of GA(1) and was counteracted by paclobutrazol treatment. Plant decapitation also produced changes in transcript levels of genes encoding enzymes of GA biosynthesis (SlCPS and SlGA20ox1) in the ovary, quite similar to those found in NPA-induced fruits. All these results suggest that auxin can have opposing effects on fruit-set, either inducing (when accumulated in the ovary) or repressing (when transported from the apical shoot) that process, and that GAs act as mediators in both cases. The effect of NPA application and decapitation on fruit-set induction was also observed in MicroTom lines bearing introgressed DWARF and SELF-PRUNING wild-type alleles.
Resumo:
Given the susceptibility of tomato plants to pests, the aim of the present study was to understand how hormones are involved in the formation of tomato natural defences against insect herbivory. Tomato hormone mutants, previously introgressed into the same genetic background of reference, were screened for alterations in trichome densities and allelochemical content. Ethylene, gibberellin, and auxin mutants indirectly showed alteration in trichome density, through effects on epidermal cell area. However, brassinosteroids (BRs) and jasmonates (JAs) directly affected trichome density and allelochemical content, and in an opposite fashion. The BR-deficient mutant dpy showed enhanced pubescence, zingiberene biosynthesis, and proteinase inhibitor expression; the opposite was observed for the JA-insensitive jai1-1 mutant. The dpyxjai1-1 double mutant showed that jai1-1 is epistatic to dpy, indicating that BR acts upstream of the JA signalling pathway. Herbivory tests with the poliphagous insect Spodoptera frugiperda and the tomato pest Tuta absoluta clearly confirmed the importance of the JA-BR interaction in defence against herbivory. The study underscores the importance of hormonal interactions on relevant agricultural traits and raises a novel biological mechanism in tomato that may differ from the BR and JA interaction already suggested for Arabidopsis.
Resumo:
We progressively reduced the complexity of humic matter by a mild sequential removal of unbound or free components, weakly, and strongly bound molecules. The auxin-like response of residues from each step was tested using tomato (cv. Micro-Tom) seedlings expressing DR5 auxin synthetic promoter fused to the beta-glucuronidase (GUS) reporter gene and the low auxin-sensitivity diageotropica (dgt) mutant. Both exogenous auxin and humic matter promoted lateral root emergence in the control, but failed to induce lateral roots in the dgt mutant. When strongly bound components were removed from humic matter by breaking the ester and ether bonds, the humic residues lost their ability to induce the DR5
Resumo:
Cadmium (Cd) is a toxic heavy metal, which can cause severe damage to plant development. The aim of this work was to characterize ultrastructural changes induced by Cd in miniature tomato cultivar Micro-Tom (MT) mutants and their wild-type counterpart. Leaves of diageotropica (dgt) and Never ripe (Nr) tomato hormonal mutants and wild-type MT were analysed by light, scanning and transmission electron microscopy in order to characterize the structural changes caused by the exposure to 1 mM CdCl(2). The effect of Cd on leaf ultrastructure was observed most noticeably in the chloroplasts, which exhibited changes in organelle shape and internal organization, of the thylakoid membranes and stroma. Cd caused an increase in the intercellular spaces in Nr leaves, but a decrease in the intercellular spaces in dgt leaves, as well as a decrease in the size of mesophyll cells in the mutants. Roots of the tomato hormonal mutants, when analysed by light microscopy, exhibited alterations in root diameter and disintegration of the epidermis and the external layers of the cortex. A comparative analysis has allowed the identification of specific Cd-induced ultrastructural changes in wild-type tomato, the pattern of which was not always exhibited by the mutants. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In order to further address the known interaction between ethylene and components of the oxidative system, we have used the ethylene-insensitive Never ripe (Nr) tomato (Solanum lycopersicum L) mutant, which blocks ethylene responses. The mutant was compared to the control Micro-Tom (MT) cultivar subjected to two stressful situations: 100 mM NaCl and 0.5 mM CdCl(2). Leaf chlorophyll, lipid peroxidation and antioxidant enzyme activities in roots, leaves and fruits, and Na and Cd accumulation in tissues were determined. Although we verified a similar growth pattern and Na and Cd accumulation for MT and Nr, the mutant exhibited reduced leaf chlorophyll degradation following stress. In roots and leaves, the patterns of catalase (CAT), glutathione reductase (GR), ascorbate peroxidase (APX), guaiacol peroxidase (GPOX), superoxide dismutase (SOD) enzyme activity as well as malondialdehyde (MDA) and hydrogen peroxide (H(2)O(2)) production under the stressful conditions tested were very similar between MT and Nr mutant. However, Nr fruits showed increased H(2)O(2) production, reduced and enhanced APX activity in NaCl and CdCl(2), respectively, and enhanced GPOX in NaCl. Moreover, through non-denaturing PAGE, a similar reduction of SOD I band intensity in both, control MT and Nr mutant, treated with NaCl was observed. In leaves and fruits, a similar SOD activity pattern was observed for all periods, genotypes and treatments. Overall the results indicate that the ethylene signaling associated with NR receptor can modulate the biochemical pathways of oxidative stress in a tissue dependent manner, and that this signaling may be different following Na and Cd exposure. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Tomato high pigment (hp) mutants represent an interesting horticultural resource due to their enhanced accumulation of carotenoids, flavonoids and vitamin C. Since hp mutants are known for their exaggerated light responses, the molecules accumulated are likely to be antioxidants, recruited to deal with light and others stresses. Further phenotypes displayed by hp mutations are reduced growth and an apparent disturbance in water loss. Here, we examined the impact of the hp1 mutation and its near isogenic line cv Micro-Tom (MT) on stomatal conductance (gs), transpiration (E), CO(2) assimilation (A) and water use efficiency (WUE). Detached hp1 leaves lost water more rapidly than control leaves, but this behaviour was reversed by exogenous abscisic acid (ABA), indicating the ability of hp1 to respond to this hormone. Although attached hp1 leaves had enhanced gs, E and A compared to control leaves, genotypic differences were lost when water was withheld. Both instantaneous leaf-level WUE and long-term whole plant WUE did not differ between hp1 and MT. Our results indicate a link between exaggerated light response and water loss in hp1, which has important implications for the use of this mutant in both basic and horticultural research.