943 resultados para HV platform
Resumo:
This thesis aims at addressing the development of autonomous behaviors, for search and exploration with a mini-UAV (Unmanned Aerial Vehicle), or also called MAV (Mini Aerial Vehicle) prototype, in order to gather information in rescue scenarios. The platform used in this work is a four rotor helicopter, known as quad-rotor from the German company Ascending Technologies GmbH, which is later assembled with a on-board processing unit (i.e. a tiny light weight computer) and a on-board sensor suite (i.e. 2D-LIDAR and Ultrasonic Sonar). This work can be divided into two phases. In the first phase an Indoor Position Tracking system was settled in order to obtain the Cartesian coordinates (i.e. X, Y, Z) and orientation (i.e.heading) which provides the relative position and orientation of the platform. The second phase was the design and implementation of medium/high level controllers on each command input in order to autonomously control the aircraft position, which is the first step towards an autonomous hovering flight, and any autonomous behavior (e.g. Landing, Object avoidance, Follow the wall). The main work is carried out in the Laboratory ”Intelligent Systems for Emergencies and Civil Defense”, in collaboration with ”Dipartimento di Informatica e Sistemistica” of Sapienza Univ. of Rome and ”Istituto Superiore Antincendi” of the Italian Firemen Department.
Resumo:
This paper proposes an efficient scalable Residue Number System (RNS) architecture supporting moduli sets with an arbitrary number of channels, allowing to achieve larger dynamic range and a higher level of parallelism. The proposed architecture allows the forward and reverse RNS conversion, by reusing the arithmetic channel units. The arithmetic operations supported at the channel level include addition, subtraction, and multiplication with accumulation capability. For the reverse conversion two algorithms are considered, one based on the Chinese Remainder Theorem and the other one on Mixed-Radix-Conversion, leading to implementations optimized for delay and required circuit area. With the proposed architecture a complete and compact RNS platform is achieved. Experimental results suggest gains of 17 % in the delay in the arithmetic operations, with an area reduction of 23 % regarding the RNS state of the art. When compared with a binary system the proposed architecture allows to perform the same computation 20 times faster alongside with only 10 % of the circuit area resources.
Resumo:
Traditional Real-Time Operating Systems (RTOS) are not designed to accommodate application specific requirements. They address a general case and the application must co-exist with any limitations imposed by such design. For modern real-time applications this limits the quality of services offered to the end-user. Research in this field has shown that it is possible to develop dynamic systems where adaptation is the key for success. However, adaptation requires full knowledge of the system state. To overcome this we propose a framework to gather data, and interact with the operating system, extending the traditional POSIX trace model with a partial reflective model. Such combination still preserves the trace mechanism semantics while creating a powerful platform to develop new dynamic systems, with little impact in the system and avoiding complex changes in the kernel source code.
Resumo:
This project was developed within the ART-WiSe framework of the IPP-HURRAY group (http://www.hurray.isep.ipp.pt), at the Polytechnic Institute of Porto (http://www.ipp.pt). The ART-WiSe – Architecture for Real-Time communications in Wireless Sensor networks – framework (http://www.hurray.isep.ipp.pt/art-wise) aims at providing new communication architectures and mechanisms to improve the timing performance of Wireless Sensor Networks (WSNs). The architecture is based on a two-tiered protocol structure, relying on existing standard communication protocols, namely IEEE 802.15.4 (Physical and Data Link Layers) and ZigBee (Network and Application Layers) for Tier 1 and IEEE 802.11 for Tier 2, which serves as a high-speed backbone for Tier 1 without energy consumption restrictions. Within this trend, an application test-bed is being developed with the objectives of implementing, assessing and validating the ART-WiSe architecture. Particularly for the ZigBee protocol case; even though there is a strong commercial lobby from the ZigBee Alliance (http://www.zigbee.org), there is neither an open source available to the community for this moment nor publications on its adequateness for larger-scale WSN applications. This project aims at fulfilling these gaps by providing: a deep analysis of the ZigBee Specification, mainly addressing the Network Layer and particularly its routing mechanisms; an identification of the ambiguities and open issues existent in the ZigBee protocol standard; the proposal of solutions to the previously referred problems; an implementation of a subset of the ZigBee Network Layer, namely the association procedure and the tree routing on our technological platform (MICAz motes, TinyOS operating system and nesC programming language) and an experimental evaluation of that routing mechanism for WSNs.
Resumo:
Applications involving biosignals, such as Electrocardiography (ECG), are becoming more pervasive with the extension towards non-intrusive scenarios helping targeting ambulatory healthcare monitoring, emotion assessment, among many others. In this study we introduce a new type of silver/silver chloride (Ag/AgCl) electrodes based on a paper substrate and produced using an inkjet printing technique. This type of electrodes can increase the potential applications of biosignal acquisition technologies for everyday life use, given that there are several advantages, such as cost reduction and easier recycling, resultant from the approach explored in our work. We performed a comparison study to assess the quality of this new electrode type, in which ECG data was collected with three types of Ag/AgCl electrodes: i) gelled; ii) dry iii) paper-based inkjet printed. We also compared the performance of each electrode when acquired using a professional-grade gold standard device, and a low cost platform. Experimental results showed that data acquired using our proposed inkjet printed electrode is highly correlated with data obtained through conventional electrodes. Moreover, the electrodes are robust to high-end and low-end data acquisition devices. Copyright © 2014 SCITEPRESS - Science and Technology Publications. All rights reserved.
Resumo:
Physical computing has spun a true global revolution in the way in which the digital interfaces with the real world. From bicycle jackets with turn signal lights to twitter-controlled christmas trees, the Do-it-Yourself (DiY) hardware movement has been driving endless innovations and stimulating an age of creative engineering. This ongoing (r)evolution has been led by popular electronics platforms such as the Arduino, the Lilypad, or the Raspberry Pi, however, these are not designed taking into account the specific requirements of biosignal acquisition. To date, the physiological computing community has been severely lacking a parallel to that found in the DiY electronics realm, especially in what concerns suitable hardware frameworks. In this paper, we build on previous work developed within our group, focusing on an all-in-one, low-cost, and modular biosignal acquisition hardware platform, that makes it quicker and easier to build biomedical devices. We describe the main design considerations, experimental evaluation and circuit characterization results, together with the results from a usability study performed with volunteers from multiple target user groups, namely health sciences and electrical, biomedical, and computer engineering. Copyright © 2014 SCITEPRESS - Science and Technology Publications. All rights reserved.
Resumo:
Separata do Tomo XXXVIII das Memories da Academia das Ciencias de Lisboa (Classe de Ciencias)
Resumo:
Emergent architectures and paradigms targeting reconfigurable manufacturing systems increasingly rely on intelligent modules to maximize the robustness and responsiveness of modern installations. Although intelligent behaviour significantly minimizes the occurrence of faults and breakdowns it does not exclude them nor can prevent equipment’s normal wear. Adequate maintenance is fundamental to extend equipments’ life cycle. It is of major importance the ability of each intelligent device to take an active role in maintenance support. Further this paradigm shift towards “embedded intelligence”, supported by cross platform technologies, induces relevant organizational and functional changes on local maintenance teams. On the one hand, the possibility of outsourcing maintenance activities, with the warranty of a timely response, through the use of pervasive networking technologies and, on the other hand, the optimization of local maintenance staff are some examples of how IT is changing the scenario in maintenance. The concept of e-maintenance is, in this context, emerging as a new discipline with defined socio-economic challenges. This paper proposes a high level maintenance architecture supporting maintenance teams’ management and offering contextualized operational support. All the functionalities hosted by the architecture are offered to the remaining system as network services. Any intelligent module, implementing the services’ interface, can report diagnostic, prognostic and maintenance recommendations that enable the core of the platform to decide on the best course of action.
Resumo:
In this paper a new simulation environment for a virtual laboratory to educational proposes is presented. The Logisim platform was adopted as the base digital simulation tool, since it has a modular implementation in Java. All the hardware devices used in the laboratory course was designed as components accessible by the simulation tool, and integrated as a library. Moreover, this new library allows the user to access an external interface. This work was motivated by the needed to achieve better learning times on co-design projects, based on hardware and software implementations, and to reduce the laboratory time, decreasing the operational costs of engineer teaching. Furthermore, the use of virtual laboratories in educational environments allows the students to perform functional tests, before they went to a real laboratory. Moreover, these functional tests allow to speed-up the learning when a problem based approach methodology is considered. © 2014 IEEE.
Resumo:
Nowadays, fibre reinforced plastics are used in a wide variety of applications. Apart from the most known reinforcement fibres, like glass or carbon, natural fibres can be seen as an economical alternative. However, some mistrust is yet limiting the use of such materials, being one of the main reasons the inconsistency normally found in their mechanical properties. It should be noticed that these materials are more used for their low density than for their high stiffness. In this work, two different types of reinforced plates were compared: glass reinforced epoxy plate and sisal reinforced epoxy plate. For material characterization purposes, tensile and flexural tests were carried out. Main properties of both materials, like elastic modulus, tensile strength or flexural modulus, are presented and compared with reference values. Afterwards, plates were drilled under two different feed rates: low and high, with two diverse tools: twist and brad type drill, while cutting speed was kept constant. Thrust forces during drilling were monitored. Then, delamination area around the hole was assessed by using digital images that were processed using a computational platform previously developed. Finally, drilled plates were mechanically tested for bearing and open-hole resistance. Results were compared and correlated with the measured delamination. Conclusions contribute to the understanding of natural fibres reinforced plastics as a substitute to glass fibres reinforced plastics, helping on cost reductions without compromising reliability, as well as the consequence of delamination on mechanical resistance of this type of composites.
Resumo:
In an increasingly competitive and globalized world, companies need effective training methodologies and tools for their employees. However, selecting the most suitable ones is not an easy task. It depends on the requirements of the target group (namely time restrictions), on the specificities of the contents, etc. This is typically the case for training in Lean, the waste elimination manufacturing philosophy. This paper presents and compares two different approaches to lean training methodologies and tools: a simulation game based on a single realistic manufacturing platform, involving production and assembly operations that allows learning by playing; and a digital game that helps understand lean tools. This paper shows that both tools have advantages in terms of trainee motivation and knowledge acquisition. Furthermore, they can be used in a complementary way, reinforcing the acquired knowledge.
Resumo:
This paper describes a modular solid-state switching cell derived from the Marx generator concept to be used in topologies for generating multilevel unipolar and bipolar high-voltage (HV) pulses into resistive loads. The switching modular cell comprises two ON/OFF semiconductors, a diode, and a capacitor. This cell can be stacked, being the capacitors charged in series and their voltages balanced in parallel. To balance each capacitor voltage without needing any parameter measurement, a vector decision diode algorithm is used in each cell to drive the two switches. Simulation and experimental results, for generating multilevel unipolar and bipolar HV pulses into resistive loads are presented.
Resumo:
In this work, a comparative study on different drill point geometries and feed rate for composite laminates drilling is presented. For this goal, thrust force monitoring during drilling, hole wall roughness measurement and delamination extension assessment after drilling is accomplished. Delamination is evaluated using enhanced radiography combined with a dedicated computational platform that integrates algorithms of image processing and analysis. An experimental procedure was planned and consequences were evaluated. Results show that a cautious combination of the factors involved, like drill tip geometry or feed rate, can promote the reduction of delamination damage.