952 resultados para HUMAN RED-CELLS
Resumo:
The chemotherapeutic drug Taxol is known to interact within a specific site on β-tubulin. Although the general location of the site has been defined by photoaffinity labeling and electron crystallography, the original data were insufficient to make an absolute determination of the bound conformation. We have now correlated the crystallographic density with analysis of Taxol conformations and have found the unique solution to be a T-shaped Taxol structure. This T-shaped or butterfly structure is optimized within the β-tubulin site and exhibits functional similarity to a portion of the B9-B10 loop in the α-tubulin subunit. The model provides structural rationalization for a sizeable body of Taxol structure–activity relationship data, including binding affinity, photoaffinity labeling, and acquired mutation in human cancer cells.
Resumo:
Neuronal progenitors and tumor cells possess propensity to proliferate and to migrate. Glutamate regulates proliferation and migration of neurons during development, but it is not known whether it influences proliferation and migration of tumor cells. We demonstrate that glutamate antagonists inhibit proliferation of human tumor cells. Colon adenocarcinoma, astrocytoma, and breast and lung carcinoma cells were most sensitive to the antiproliferative effect of the N-methyl-d-aspartate antagonist dizocilpine, whereas breast and lung carcinoma, colon adenocarcinoma, and neuroblastoma cells responded most favorably to the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate antagonist GYKI52466. The antiproliferative effect of glutamate antagonists was Ca2+ dependent and resulted from decreased cell division and increased cell death. Morphological alterations induced by glutamate antagonists in tumor cells consisted of reduced membrane ruffling and pseudopodial protrusions. Furthermore, glutamate antagonists decreased motility and invasive growth of tumor cells. These findings suggest anticancer potential of glutamate antagonists.
Resumo:
Oncolytic herpes simplex virus type 1 (HSV-1) vectors are promising therapeutic agents for cancer. Their efficacy depends on the extent of both intratumoral viral replication and induction of a host antitumor immune response. To enhance these properties while employing ample safeguards, two conditionally replicating HSV-1 vectors, termed G47Δ and R47Δ, have been constructed by deleting the α47 gene and the promoter region of US11 from γ34.5-deficient HSV-1 vectors, G207 and R3616, respectively. Because the α47 gene product is responsible for inhibiting the transporter associated with antigen presentation (TAP), its absence led to increased MHC class I expression in infected human cells. Moreover, some G47Δ-infected human melanoma cells exhibited enhanced stimulation of matched antitumor T cell activity. The deletion also places the late US11 gene under control of the immediate-early α47 promoter, which suppresses the reduced growth properties of γ34.5-deficient mutants. G47Δ and R47Δ showed enhanced viral growth in a variety of cell lines, leading to higher virus yields and enhanced cytopathic effect in tumor cells. G47Δ was significantly more efficacious in vivo than its parent G207 at inhibiting tumor growth in both immune-competent and immune-deficient animal models. Yet, when inoculated into the brains of HSV-1-sensitive A/J mice at 2 × 106 plaque forming units, G47Δ was as safe as G207. These results suggest that G47Δ may have enhanced antitumor activity in humans.
Resumo:
The reduction in levels of the potentially toxic amyloid-β peptide (Aβ) has emerged as one of the most important therapeutic goals in Alzheimer's disease. Key targets for this goal are factors that affect the expression and processing of the Aβ precursor protein (βAPP). Earlier reports from our laboratory have shown that a novel cholinesterase inhibitor, phenserine, reduces βAPP levels in vivo. Herein, we studied the mechanism of phenserine's actions to define the regulatory elements in βAPP processing. Phenserine treatment resulted in decreased secretion of soluble βAPP and Aβ into the conditioned media of human neuroblastoma cells without cellular toxicity. The regulation of βAPP protein expression by phenserine was posttranscriptional as it suppressed βAPP protein expression without altering βAPP mRNA levels. However, phenserine's action was neither mediated through classical receptor signaling pathways, involving extracellular signal-regulated kinase or phosphatidylinositol 3-kinase activation, nor was it associated with the anticholinesterase activity of the drug. Furthermore, phenserine reduced expression of a chloramphenicol acetyltransferase reporter fused to the 5′-mRNA leader sequence of βAPP without altering expression of a control chloramphenicol acetyltransferase reporter. These studies suggest that phenserine reduces Aβ levels by regulating βAPP translation via the recently described iron regulatory element in the 5′-untranslated region of βAPP mRNA, which has been shown previously to be up-regulated in the presence of interleukin-1. This study identifies an approach for the regulation of βAPP expression that can result in a substantial reduction in the level of Aβ.
Resumo:
The group C adenovirus E4orf6 protein has previously been shown to bind to the p53 cellular tumor suppressor protein and block its ability to activate transcription. Here we show that the E4orf6 protein blocks the induction of p53-mediated apoptosis when AT6 cells, which harbor a temperature-sensitive p53, are shifted to the permissive temperature. The E4orf6 protein does not, however, prevent the induction of apoptosis in p53-deficient H1299 cells by treatment with tumor necrosis factor alpha and cycloheximide. The E4orf6 protein also cooperates with the adenovirus E1A protein to transform primary baby rat kidney cells, and it cooperates with the adenovirus E1A plus E1B 19-kDa and E1B 55-kDa proteins to increase the number of baby rat kidney cell transformants and enhance the rate at which they arise. The level of p53 is substantially reduced in transformed cells expressing the E4orf6 protein in comparison to adenovirus transformants lacking it. The E4orf6 gene also accelerates tumor formation when transformed baby rat kidney cells are injected subcutaneously into the nude mouse, and it converts human 293 cells from nontumorigenic to tumorigenic in nude mice. In addition to the well-studied E1A and E1B oncogenes, group C adenoviruses harbor a third oncogene, E4orf6, which functions in some respects similarly to the E1B oncogene.
Resumo:
Due to lack of effective therapy, primary brain tumors are the focus of intense investigation of novel experimental approaches that use vectors and recombinant viruses. Therapeutic approaches have been both indirect, whereby vectors are used, or direct to allow for direct cell killing by the introduced virus. Genetically engineered herpes simplex viruses are currently being evaluated as an experimental approach to eradicate malignant human gliomas. Initial studies with gamma (1)34.5 mutants, R3616 (from which both copies of the gamma (1)34.5 gene have been deleted) and R4009 (a construct with two stop codons inserted into the gamma (1)34.5 gene), have been assessed. In a syngeneic scid mouse intracranial tumor model, recombinant herpes simplex virus can be experimentally used for the treatment of brain tumors. These viruses and additional engineered viruses were subsequently tested in human glioma cells both in vitro and in vivo. Using a xenogeneic scid mouse intracranial glioma model, R4009 therapy of established tumors significantly prolonged survival. Most importantly, long-term survival was achieved, with histologic evidence that R4009 eradicated intracranial tumors in this model. Furthermore, the opportunity to evaluate gamma (1)34.5 mutants that have enhanced oncolytic activity, e.g., R8309 where the carboxyl terminus of the gamma (1)34.5 gene has been replaced by the murine homologue, MyD116, are considered.
Resumo:
Integrins are major two-way signaling receptors responsible for the attachment of cells to the extracellular matrix and for cell-cell interactions that underlie immune responses, tumor metastasis, and progression of atherosclerosis and thrombosis. We report the structure-function analysis of the cytoplasmic tail of integrin beta 3 (glycoprotein IIla) based on the cellular import of synthetic peptide analogs of this region. Among the four overlapping cell-permeable peptides, only the peptide carrying residues 747-762 of the carboxyl-terminal segment of integrin beta 3 inhibited adhesion of human erythroleukemia (HEL) cells and of human endothelial cells (ECV) 304 to immobilized fibrinogen mediated by integrin beta 3 heterodimers, alpha IIb beta 3, and alpha v beta 3, respectively. Inhibition of adhesion was integrin-specific because the cell-permeable beta 3 peptide (residues 747-762) did not inhibit adhesion of human fibroblasts mediated by integrin beta 1 heterodimers. Conversely, a cell-permeable peptide representing homologous portion of the integrin beta 1 cytoplasmic tail (residues 788-803) inhibited adhesion of human fibroblasts, whereas it was without effect on adhesion of HEL or ECV 304 cells. The cell-permeable integrin beta 3 peptide (residues 747-762) carrying a known loss-of-function mutation (Ser752Pro) responsible for the genetic disorder Glanzmann thrombasthenia Paris I did not inhibit cell adhesion of HEL or ECV 304 cells, whereas the beta 3 peptide carrying a Ser752Ala mutation was inhibitory. Although Ser752 is not essential, Tyr747 and Tyr759 form a functionally active tandem because conservative mutations Tyr747Phe or Tyr759Phe resulted in a nonfunctional cell permeable integrin beta 3 peptide. We propose that the carboxyl-terminal segment of the integrin beta 3 cytoplasmic tail spanning residues 747-762 constitutes a major intracellular cell adhesion regulatory domain (CARD) that modulates the interaction of integrin beta 3-expressing cells with immobilized fibrinogen. Import of cell-permeable peptides carrying this domain results in inhibition "from within" of the adhesive function of these integrins.
Resumo:
Early atherosclerotic lesions develop in a topographical pattern that strongly suggests involvement of hemodynamic forces in their pathogenesis. We hypothesized that certain endothelial genes, which exhibit differential responsiveness to distinct fluid mechanical stimuli, may participate in the atherogenic process by modulating, on a local level within the arterial wall, the effects of systemic risk factors. A differential display strategy using cultured human endothelial cells has identified two genes, manganese superoxide dismutase and cyclooxygenase-2, that exhibit selective and sustained up-regulation by steady laminar shear stress (LSS). Turbulent shear stress, a nonlaminar fluid mechanical stimulus, does not induce these genes. The endothelial form of nitric oxide synthase also demonstrates a similar LSS-selective pattern of induction. Thus, three genes with potential atheroprotective (antioxidant, antithrombotic, and antiadhesive) activities manifest a differential response to distinct fluid mechanical stimuli, providing a possible mechanistic link between endothelial gene expression and early events in atherogenesis. The activities of these and other LSS-responsive genes may have important implications for the pathogenesis and prevention of atherosclerosis.
Resumo:
Few promoters are active at high levels in all cells. Of these, the majority encode structural RNAs transcribed by RNA polymerases I or III and are not accessible for the expression of proteins. An exception are the small nuclear RNAs (snRNAs) transcribed by RNA polymerase II. Although snRNA biosynthesis is unique and thought not to be compatible with synthesis of functional mRNA, we have tested these promoters for their ability to express functional mRNAs. We have used the murine U1a and U1b snRNA gene promoters to express the Escherichia coli lacZ gene and the human alpha-globin gene from either episomal or integrated templates by transfection, or infection into a variety of mammalian cell types. Equivalent expression of beta-galactosidase was obtained from < 250 nucleotides of 5'-flanking sequence containing the complete promoter of either U1 snRNA gene or from the 750-nt cytomegalovirus promoter and enhancer regions. The mRNA was accurately initiated at the U1 start site, efficiently spliced and polyadenylylated, and localized to polyribosomes. Recombinant adenovirus containing the U1b-lacZ chimeric gene transduced and expressed beta-galactosidase efficiently in human 293 cells and airway epithelial cells in culture. Viral vectors containing U1 snRNA promoters may be an attractive alternative to vectors containing viral promoters for persistent high-level expression of therapeutic genes or proteins.
Resumo:
Cancer is a disease characterized by defects in growth control, and tumor cells often display abnormal patterns of cellular differentiation. The combination of recombinant human fibroblast interferon and the antileukemic agent mezerein corrects these abnormalities in cultured human melanoma cells resulting in irreversible growth arrest and terminal differentiation. Subtraction hybridization identifies a melanoma differentiation associated gene (mda-7) with elevated expression in growth arrested and terminally differentiated human melanoma cells. Colony formation decreases when mda-7 is transfected into human tumor cells of diverse origin and with multiple genetic defects. In contrast, the effects of mda-7 on growth and colony formation in transient transfection assays with normal cells, including human mammary epithelial, human skin fibroblast, and rat embryo fibroblast, is quantitatively less than that found with cancer cells. Tumor cells expressing elevated mda-7 display suppression in monolayer growth and anchorage independence. Infection with a recombinant type 5 adenovirus expressing antisense mda-7 eliminates mda-7 suppression of the in vitro growth and transformed phenotype. The ability of mda-7 to suppress growth in cancer cells not expressing or containing defects in both the retinoblastoma (RB) and p53 genes indicates a lack of involvement of these critical tumor suppressor elements in mediating mda-7-induced growth inhibition. The lack of protein homology of mda-7 with previously described growth suppressing genes and the differential effect of this gene on normal versus cancer cells suggests that mda-7 may represent a new class of cancer growth suppressing genes with antitumor activity.
Resumo:
Tissue factor (TF) is the cellular receptor for coagulation factor VI/VIIa and is the membrane-bound glycoprotein that is generally viewed as the primary physiological initiator of blood coagulation. To define in greater detail the physiological role of TF in development and hemostasis, the TF gene was disrupted in mice. Mice heterozygous for the inactivated TF allele expressed approximately half the TF activity of wild-type mice but were phenotypically normal. However, homozygous TF-/- pups were never born in crosses between heterozygous mice. Analysis of mid-gestation embryos showed that TF-/- embryos die in utero between days 8.5 and 10.5. TF-/- embryos were morphologically distinct from their TF+/+ and TF+/- littermates after day 9.5 in that they were pale, edematous, and growth retarded. Histological studies showed that early organogenesis was normal. The initial failure in TF-/- embryos appeared to be hemorrhaging, leading to the leakage of embryonic red cells from both extraembryonic and embryonic vessels. These studies indicate that TF plays an indispensable role in establishing and/or maintaining vascular integrity in the developing embryo at a time when embryonic and extraembryonic vasculatures are fusing and blood circulation begins.
Resumo:
For catalytic activity, nitric oxide synthases (NOSs) must be dimeric. Previous work revealed that the requirements for stable dimerization included binding of tetrahydrobiopterin (BH4), arginine, and heme. Here we asked what function is served by dimerization. We assessed the ability of individually inactive mutants of mouse inducible NOS (iNOS; NOS2), each deficient in binding a particular cofactor or cosubstrate, to complement each other by generating NO upon cotransfection into human epithelial cells. The ability of the mutants to homodimerize was gauged by gel filtration and/or PAGE under partially denaturing conditions, both followed by immunoblot. Their ability to heterodimerize was assessed by coimmunoprecipitation. Heterodimers that contained only one COOH-terminal hemimer and only one BH4-binding site could both form and function, even though the NADPH-, FAD-, and FMN-binding domains (in the COOH-terminal hemimer) and the BH4-binding sites (in the NH2-terminal hemimer) were contributed by opposite chains. Heterodimers that contained only one heme-binding site (Cys-194) could also form, either in cis or in trans to the nucleotide-binding domains. However, for NO production, both chains had to bind heme. Thus, NO production by iNOS requires dimerization because the active site requires two hemes.
Resumo:
It has previously been argued that the repressor of protein synthesis initiation factor 4E, 4E-BP1, is a direct in vivo target of p42mapk. However, the immunosuppressant rapamycin blocks serum-induced 4E-BP1 phosphorylation and, in parallel, p70s6k activation, with no apparent effect on p42mapk activation. Consistent with this finding, the kinetics of serum-induced 4E-BP1 phosphorylation closely follow those of p70s6k activation rather than those of p42mapk. More striking, insulin, which does not induce p42mapk activation in human 293 cells or Swiss mouse 3T3 cells, induces 4E-BP1 phosphorylation and p70s6k activation in both cell types. Anisomycin, which, like insulin, does not activate p42mapk, promotes a small parallel increase in 4E-BP1 phosphorylation and p70s6k activation. The insulin effect on 4E-BP1 phosphorylation and p70s6k activation in both cell types is blocked by SQ20006, wortmannin, and rapamycin. These three inhibitors have no effect on p42mapk activation induced by phorbol 12-tetradecanoate 13-acetate, though wortmannin partially suppresses both the p70s6k response and the 4E-BP1 response. Finally, in porcine aortic endothelial cells stably transfected with either the wild-type platelet-derived growth factor receptor or a mutant receptor bearing the double point mutation 740F/751F, p42mapk activation in response to platelet-derived growth factor is unimpaired, but increased 4E-BP1 phosphorylation is ablated, as previously reported for p70s6k. The data presented here demonstrate that 4E-BP1 phosphorylation is mediated by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase.
Resumo:
B1(dsFv)-PE33 is a recombinant immunotoxin composed of a mutant form of Pseudomonas exotoxin (PE) that does not need proteolytic activation and a disulfide-stabilized Fv fragment of the anti-Lewis(y) monoclonal antibody B1, which recognizes a carbohydrate epitope on human carcinoma cells. In this molecule, amino acids 1-279 of PE are deleted and domain Ib (amino acids 365-394) is replaced by the heavy chain variable region (VH) domain of monoclonal antibody B1. The light chain (VL) domain is connected to the VH domain by a disulfide bond. This recombinant toxin, termed B1(dsFv)-PE33, does not require proteolytic activation and it is smaller than other immunotoxins directed at Lewis(y), all of which require proteolytic activation. Furthermore, it is more cytotoxic to antigen-positive cell lines. B1(dsFv)-PE38 has the highest antitumor activity of anti-Lewis(y) immunotoxins previously constructed. B1(dsFv)-PE33 caused complete regression of tumors when given at 12 micrograms/kg (200 pmol/kg) every other day for three doses, whereas B1(dsFv)-PE38 did not cause regressions at 13 micrograms/kg (200 pmol/kg). By bypassing the need for proteolytic activation and decreasing molecular size we have enlarged the therapeutic window for the treatment of human cancers growing in mice, so that complete remissions are observed at 2.5% of the LD50.
Resumo:
Human cancer cells with a mutated p53 tumor-suppressor gene have a selective growth advantage and may exhibit resistance to ionizing radiation and certain chemotherapeutic agents. To examine the prognostic value of mutations in the p53 gene, a cohort of 90 Midwestern Caucasian breast cancer patients were analyzed with methodology that detects virtually 100% of all mutations. The presence of a p53 gene mutation was by far the single most predictive indicator for recurrence and death (relative risks of 4.7 and 23.2, respectively). Direct detection of p53 mutations had substantially greater prognostic value than immunohistochemical detection of p53 overexpression. Analysis of p53 gene mutations may permit identification of a subset of breast cancer patients who, despite lack of conventional indicators of poor prognosis, are at high risk of early recurrence and death.