976 resultados para HIGH-RESOLUTION B-11


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an unprecedented multicentennial sediment record from the foot of Vesterisbanken Seamount, central Greenland Sea, covering the past 22.3 thousand years (ka). Based on planktic foraminiferal total abundances, species assemblages, and stable oxygen and carbon isotopes, the palaeoenvironments in this region of modern deepwater renewal were reconstructed. Results show that during the Last Glacial Maximum the area was affected by harsh polar conditions with only episodic improvements during warm summer seasons. Since 18?ka extreme freshwater discharges from nearby sources occurred, influencing the surface water environment. The last major freshwater event took place during the Younger Dryas. The onset of the Holocene was characterized by an improvement of environmental conditions suggesting warming and increasing ventilation of the upper water layers. The early Holocene saw a stronger Atlantic waters advection to the area, which began around 10.5 and ended quite rapidly at 5.5?ka, followed by the onset of Neoglacial cooling. Surface water ventilation reached a maximum in the middle Holocene. Around 3?ka the surface water stratification increased leading to subsequent amplification of the warming induced the North Atlantic Oscillation at 2?ka.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Contract no. NAS 8-1520."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paper presented at Royal Microscopical Society's celebration of the "Tercentenary of the Microscope in Living Biology," April 9, 1963, Bethesda, Maryland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-impact, localized intense rainfall episodes represent a major socio-economic problem for societies worldwide, and at the same time these events are notoriously difficult to simulate properly in climate models. Here, the authors investigate how horizontal resolution and model formulation influence this issue by applying the HARMONIE regional climate model (HCLIM) with three different setups; two using convection parameterization at 15 and 6.25 km horizontal resolution (the latter within the “grey-zone” scale), with lateral boundary conditions provided by ERA-Interim reanalysis and integrated over a pan-European domain, and one with explicit convection at 2 km resolution (HCLIM2) over the Alpine region driven by the 15 km model. Seven summer seasons were sampled and validated against two high-resolution observational data sets. All HCLIM versions underestimate the number of dry days and hours by 20-40%, and overestimate precipitation over the Alpine ridge. Also, only modest added value were found of “grey-zone” resolution. However, the single most important outcome is the substantial added value in HCLIM2 compared to the coarser model versions at sub-daily time scales. It better captures the local-to-regional spatial patterns of precipitation reflecting a more realistic representation of the local and meso-scale dynamics. Further, the duration and spatial frequency of precipitation events, as well as extremes, are closer to observations. These characteristics are key ingredients in heavy rainfall events and associated flash floods, and the outstanding results using HCLIM in convection-permitting setting are convincing and encourage further use of the model to study changes in such events in changing climates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climatic changes are most pronounced in northern high latitude regions. Yet, there is a paucity of observational data, both spatially and temporally, such that regional-scale dynamics are not fully captured, limiting our ability to make reliable projections. In this study, a group of dynamical downscaling products were created for the period 1950 to 2100 to better understand climate change and its impacts on hydrology, permafrost, and ecosystems at a resolution suitable for northern Alaska. An ERA-interim reanalysis dataset and the Community Earth System Model (CESM) served as the forcing mechanisms in this dynamical downscaling framework, and the Weather Research & Forecast (WRF) model, embedded with an optimization for the Arctic (Polar WRF), served as the Regional Climate Model (RCM). This downscaled output consists of multiple climatic variables (precipitation, temperature, wind speed, dew point temperature, and surface air pressure) for a 10 km grid spacing at three-hour intervals. The modeling products were evaluated and calibrated using a bias-correction approach. The ERA-interim forced WRF (ERA-WRF) produced reasonable climatic variables as a result, yielding a more closely correlated temperature field than precipitation field when long-term monthly climatology was compared with its forcing and observational data. A linear scaling method then further corrected the bias, based on ERA-interim monthly climatology, and bias-corrected ERA-WRF fields were applied as a reference for calibration of both the historical and the projected CESM forced WRF (CESM-WRF) products. Biases, such as, a cold temperature bias during summer and a warm temperature bias during winter as well as a wet bias for annual precipitation that CESM holds over northern Alaska persisted in CESM-WRF runs. The linear scaling of CESM-WRF eventually produced high-resolution downscaling products for the Alaskan North Slope for hydrological and ecological research, together with the calibrated ERA-WRF run, and its capability extends far beyond that. Other climatic research has been proposed, including exploration of historical and projected climatic extreme events and their possible connections to low-frequency sea-atmospheric oscillations, as well as near-surface permafrost degradation and ice regime shifts of lakes. These dynamically downscaled, bias corrected climatic datasets provide improved spatial and temporal resolution data necessary for ongoing modeling efforts in northern Alaska focused on reconstructing and projecting hydrologic changes, ecosystem processes and responses, and permafrost thermal regimes. The dynamical downscaling methods presented in this study can also be used to create more suitable model input datasets for other sub-regions of the Arctic.