946 resultados para HABITABLE ZONE
Resumo:
High-resolution bio- and chemostratigraphy of an earliest Pliocene section from ODP Site 652 indicates that postflood paleoceanographic conditions in the Tyrrhenian Sea can be sub-divided into two discrete intervals. The first is manifested by an acme of Sphaeroidinellopsis spp., increasing carbonate contents, and a progressive decrease upsection in both the d13C and dl8O values of the planktonic foraminifera. The lower part of the acme interval contains unusual surface-to-bottom water isotope gradients suggesting a stratification of two water masses. Normal gradients in the upper part of the acme interval suggest a well-mixed water body. Between the end of the acme interval and the MP11/MP12 boundary, denoted by the first occurrence (F.O.) of Globorotalia margaritae, a migrational first appearance, there was a catastrophic collapse of the gradient marking an onset of the second post-flood interval. The disintegration of habitable conditions is suggested by a sharp decrease in carbonate content and the disappearance of the benthonic assemblage, which is subsequently replaced predominantly by Uvigerinapygmea, indicative of cold, low-oxygenated bottom waters. The introduction of benthonic species denoting well-oxygenated bottom conditions occurs within the lower MP12 zone. Superimposed on these overall trends are shorter term, warm-cold cycles, which are interpreted as orbitally induced, climatic fluctuations. Correlative studies of the less complete earliest Pliocene sections from ODP Holes 653B and 654A confirm these interpretations. A scenario derived from an integration of all the stratigraphic data indicates that normal paleoceanographic conditions were operating in the Tyrrhenian Sea only approximately 250,000 yr after the cessation of Messinian evaporative conditions at the Miocene/Pliocene boundary. The post-flood interval is marked by an initial period of gradual infilling, the Sphaeroidinellopsis spp. acme interval, followed by a disintegration of oceanographic conditions and a second recovery period. A sudden influx of cold, deep Atlantic waters into the Tyrrhenian Sea, resulting from a major tectonic break in the Gibraltar sill, may have caused this catastrophic reversal in the orderly recovery of normal paleoceanographic conditions in the post-flood period.
Resumo:
Features of spatial variability of hydrogen sulfide in the northeastern part of the Black Sea are estimated. Some technical aspects of H2S concentration determination in the anoxic zone are discussed: in its upper part at H2S concentration <30 µmol/l, the photometric method is recommended, while for deeper layers the iodometric method should be used. With linearity of vertical distribution of hydrogen sulfide and ammonium taken into account their vertical gradients are estimated as 0.49+/-0.04 µmol/m and 0.19+/-0.06 µmol/m respectively. It is shown that the upper boundary of the H2S layer corresponds to the isopycnal surface with Sigma_t = 16.19+/-0.05 arbitrary units. Special attention is paid to relationship of hydrogen sulfide distribution with hydrophysical features in the region under study, in particular in the coastal zone. It is shown that hydrodynamic conditions control spatial distribution of hydrogen sulfide. On the basis of isopycnal treatment of the H2S field existence of a coastal convergence zone is proved, and peculiarities are recognized of vertical circulation in the main Black Sea gyre and coastal anticyclonic eddies; here hydrogen sulfide serves as a tracer of hydrophysical mixing processes.
(Table 4) Rare earth element contents in selected basalts from the Sierra Leone Fracture Zone region