980 resultados para Growth and survival


Relevância:

100.00% 100.00%

Publicador:

Resumo:

White clover (Trifolium repens) is an important pasture legume but is often difficult to sustain in a mixed sward because, among other things, of the damage to roots caused by the soil-dwelling larval stages of S. lepidus. Locating the root nodules on the white clover roots is crucial for the survival of the newly hatched larvae. This paper presents a numerical model to simulate the movement of newly hatched S. lepidus larvae towards the root nodules, guided by a chemical signal released by the nodules. The model is based on the diffusion-chemotaxis equation. Experimental observations showed that the average speed of the larvae remained approximately constant, so the diffusion-chernotaxis model was modified so that the larvae respond only to the gradient direction of the chemical signal but not its magnitude. An individual-based lattice Boltzmann method was used to simulate the movement of individual larvae, and the parameters required for the model were estimated from the measurement of larval movement towards nodules in soil scanned using X-ray microtomography. The model was used to investigate the effects of nodule density, the rate of release of chemical signal, the sensitivity of the larvae to the signal, and the random foraging of the larvae on the movement and subsequent survival of the larvae. The simulations showed that the most significant factors for larval survival were nodule density and the sensitivity of the larvae to the signal. The dependence of larval survival rate on nodule density was well fitted by the Michealis-Menten kinetics. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bloom-forming and toxin-producing cyanobacteria remain a persistent nuisance across the world. Modelling of cyanobacteria in freshwaters is an important tool for understanding their population dynamics and predicting the location and timing of the bloom events in lakes and rivers. In this article, a new deterministic model is introduced which simulates the growth and movement of cyanobacterial blooms in river systems. The model focuses on the mathematical description of the bloom formation, vertical migration and lateral transport of colonies within river environments by taking into account the four major factors that affect the cyanobacterial bloom formation in freshwaters: light, nutrients, temperature and river flow. The model consists of two sub-models: a vertical migration model with respect to growth of cyanobacteria in relation to light, nutrients and temperature; and a hydraulic model to simulate the horizontal movement of the bloom. This article presents the model algorithms and highlights some important model results. The effects of nutrient limitation, varying illumination and river flow characteristics on cyanobacterial movement are simulated. The results indicate that under high light intensities and in nutrient-rich waters colonies sink further as a result of carbohydrate accumulation in the cells. In turbulent environments, vertical migration is retarded by vertical velocity component generated by turbulent shear stress. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bloom-forming and toxin-producing cyanobacteria remain a persistent nuisance across the world. Modelling of cyanobacteria in freshwaters is an important tool for understanding their population dynamics and predicting the location and timing of the bloom events in lakes and rivers. A new deterministic-mathematical model was developed, which simulates the growth and movement of cyanobacterial blooms in river systems. The model focuses on the mathematical description of the bloom formation, vertical migration and lateral transport of colonies within river environments by taking into account the major factors that affect the cyanobacterial bloom formation in rivers including, light, nutrients and temperature. A technique called generalised sensitivity analysis was applied to the model to identify the critical parameter uncertainties in the model and investigates the interaction between the chosen parameters of the model. The result of the analysis suggested that 8 out of 12 parameters were significant in obtaining the observed cyanobacterial behaviour in a simulation. It was found that there was a high degree of correlation between the half-saturation rate constants used in the model.