941 resultados para Group delay dispersion
Resumo:
Structural-acoustic waveguides of two different geometries are considered: a 2-D rectangular and a circular cylindrical geometry. The objective is to obtain asymptotic expansions of the fluid-structure coupled wavenumbers. The required asymptotic parameters are derived in a systematic way, in contrast to the usual intuitive methods used in such problems. The systematic way involves analyzing the phase change of a wave incident on a single boundary of the waveguide. Then, the coupled wavenumber expansions are derived using these asymptotic parameters. The phase change is also used to qualitatively demarcate the dispersion diagram as dominantly structure-originated, fluid originated or fully coupled. In contrast to intuitively obtained asymptotic parameters, this approach does not involve any restriction on the material and geometry of the structure. The derived closed-form solutions are compared with the numerical solutions and a good match is obtained. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
Based on the homotopy mapping, a globally convergent method of parameter inversion for non-equilibrium convection-dispersion equations (CDEs) is developed. Moreover, in order to further improve the computational efficiency of the algorithm, a properly smooth function, which is derived from the sigmoid function, is employed to update the homotopy parameter during iteration. Numerical results show the feature of global convergence and high performance of this method. In addition, even the measurement quantities are heavily contaminated by noises, and a good solution can be found.
Resumo:
An analytical-numerical method is presented for analyzing dispersion and characteristic surface of waves in a hybrid multilayered piezoelectric plate. In this method, the multilayered piezoelectric plate is divided into a number of layered elements with three-nodal-lines in the wall thickness, the coupling between the elastic field and the electric field is considered in each element. The associated frequency dispersion equation is developed and the phase velocity and slowness, as well as the group velocity and slowness are established in terms of the Rayleigh quotient. Six characteristic wave surfaces are introduced to visualize the effects of anisotropy and piezoelectricity on wave propagation. Examples provide a full understanding for the complex phenomena of elastic waves in hybrid multilayered piezoelectric media.
Resumo:
For solving complex flow field with multi-scale structure higher order accurate schemes are preferred. Among high order schemes the compact schemes have higher resolving efficiency. When the compact and upwind compact schemes are used to solve aerodynamic problems there are numerical oscillations near the shocks. The reason of oscillation production is because of non-uniform group velocity of wave packets in numerical solutions. For improvement of resolution of the shock a parameter function is introduced in compact scheme to control the group velocity. The newly developed method is simple. It has higher accuracy and less stencil of grid points.
Resumo:
We develop two new amphiphilic molecules that are shown to act as efficient surfactants for carbon nanotubes in nonpolar organic solvents. The active conjugated groups, which are highly attracted to the graphene nanotube surface, are based on pyrene and porphyrin. We show that relatively short (C18) carbon tails are insufficient to provide stabilization. As our ultimate aim is to disperse and stabilize nanotubes in siloxane matrix (polymer and cross-linked elastomer), both surfactant molecules were made with long siloxane tails to facilitate solubility and steric stabilization. We show that the pyrene-siloxane surfactant is very effective in dispersing multiwall nanotubes, while the porphyrin-siloxane makes single-wall nanotubes soluble, both in petroleum ether and in siloxane matrix.
Resumo:
For simulating multi-scale complex flow fields like turbulent flows, the high order accurate schemes are preferred. In this paper, a scheme construction with numerical flux residual correction (NFRC) is presented. Any order accurate difference approximation can be obtained with the NFRC. To improve the resolution of the shock, the constructed schemes are modified with group velocity control (GVC) and weighted group velocity control (WGVC). The method of scheme construction is simple, and it is used to solve practical problems.
Resumo:
A new particle image technique was developed to analyze the dispersion of tracer particles in an internally circulating fluidized bed (ICFB). The movement course and the concentration distribution of tracer particles in the bed were imaged and the degree of inhomogeneity of tracer particles was analyzed. The lateral and axial dispersion coefficients of particles were calculated for various zones in ICFB. Results indicate that the lateral diffusion coefficient in the fluidized bed with uneven air distribution is significantly higher than that in uniform bubbling beds with even air distribution. The dispersion coefficients are different along bed length and height.
Resumo:
To overcome the difficulty in the DNS of compressible turbulence at high turbulent Mach number, a new difference scheme called GVC8 is developed. We have succeeded in the direct numerical simulation of decaying compressible turbulence up to turbulent Mach number 0.95. The statistical quantities thus obtained at lower turbulent Mach number agree well with those from previous authors with the same initial conditions, but they are limited to simulate at lower turbulent Mach numbers due to the so-called start-up problem. The energy spectrum and coherent structure of compressible turbulent flow are analysed. The scaling law of compressible turbulence is studied. The computed results indicate that the extended self-similarity holds in decaying compressible turbulence despite the occurrence of shocklets, and compressibility has little effects on relative scaling exponents when turbulent Mach number is not very high.