992 resultados para Group Segmentation
Resumo:
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) represents an established method for the detection and diagnosis of breast lesions. While mass-like enhancing lesions can be easily categorized according to the Breast Imaging Reporting and Data System (BI-RADS) MRI lexicon, a majority of diagnostically challenging lesions, the so called non-mass-like enhancing lesions, remain both qualitatively as well as quantitatively difficult to analyze. Thus, the evaluation of kinetic and/or morphological characteristics of non-masses represents a challenging task for an automated analysis and is of crucial importance for advancing current computer-aided diagnosis (CAD) systems. Compared to the well-characterized mass-enhancing lesions, non-masses have no well-defined and blurred tumor borders and a kinetic behavior that is not easily generalizable and thus discriminative for malignant and benign non-masses. To overcome these difficulties and pave the way for novel CAD systems for non-masses, we will evaluate several kinetic and morphological descriptors separately and a novel technique, the Zernike velocity moments, to capture the joint spatio-temporal behavior of these lesions, and additionally consider the impact of non-rigid motion compensation on a correct diagnosis.
The Use of Family Group Conferences in Child Protection Work: An Exploration of Professionals' Views
Resumo:
We have examined the ability of observers to parse bimodal local-motion distributions into two global motion surfaces, either overlapping (yielding transparent motion) or spatially segregated (yielding a motion boundary). The stimuli were random dot kinematograms in which the direction of motion of each dot was drawn from one of two rectangular probability distributions. A wide range of direction distribution widths and separations was tested. The ability to discriminate the direction of motion of one of the two motion surfaces from the direction of a comparison stimulus was used as an objective test of the perception of two discrete surfaces. Performance for both transparent and spatially segregated motion was remarkably good, being only slightly inferior to that achieved with a single global motion surface. Performance was consistently better for segregated motion than for transparency. Whereas transparent motion was only perceived with direction distributions which were separated by a significant gap, segregated motion could be seen with abutting or even partially overlapping direction distributions. For transparency, the critical gap increased with the range of directions in the distribution. This result does not support models in which transparency depends on detection of a minimum size of gap defining a bimodal direction distribution. We suggest, instead, that the operations which detect bimodality are scaled (in the direction domain) with the overall range of distributions. This yields a flexible, adaptive system that determines whether a gap in the direction distribution serves as a segmentation cue or is smoothed as part of a unitary computation of global motion.
Resumo:
The mechanisms underlying the parsing of a spatial distribution of velocity vectors into two adjacent (spatially segregated) or overlapping (transparent) motion surfaces were examined using random dot kinematograms. Parsing might occur using either of two principles. Surfaces might be defined on the basis of similarity of motion vectors and then sharp perceptual boundaries drawn between different surfaces (continuity-based segmentation). Alternatively, detection of a high gradient of direction or speed separating the motion surfaces might drive the process (discontinuity-based segmentation). To establish which method is used, we examined the effect of blurring the motion direction gradient. In the case of a sharp direction gradient, each dot had one of two directions differing by 135°. With a shallow gradient, most dots had one of two directions but the directions of the remainder spanned the range between one motion-defined surface and the other. In the spatial segregation case the gradient defined a central boundary separating two regions. In the transparent version the dots were randomly positioned. In both cases all dots moved with the same speed and existed for only two frames before being randomly replaced. The ability of observers to parse the motion distribution was measured in terms of their ability to discriminate the direction of one of the two surfaces. Performance was hardly affected by spreading the gradient over at least 25% of the dots (corresponding to a 1° strip in the segregation case). We conclude that detection of sharp velocity gradients is not necessary for distinguishing different motion surfaces.
Resumo:
The Interact System Model (ISM) developed by Fisher and Hawes (1971) for the analysis of face-to-face communication during small-group problem solving activities was used to study online communication. This tool proved to be of value in the analysis, but the conversation patterns reported by Fisher (1980) did not fully appear in the online environment. Participants displayed a habit of "being too polite" and not fully voicing their disagreements with ideas posed by others. Thus progress towards task completion was slow and incomplete.
Choosing for the children: The affiliation of the children of minority-majority group intermarriages
Resumo:
Can learning quality be maintained in the face of increasing class size by the use of Computer Supported Co-operative Learning (CSCL) technologies? In particular, can Computer-Mediated Communication promote critical thinking in addition to surface information transfer? We compared face-to-face seminars with asynchronous computer conferencing in the same Information Management class. From Garrison's theory of critical thinking and Henri's critical reasoning skills, we developed two ways of evaluating critical thinking: a student questionnaire and a content analysis technique. We found evidence for critical thinking in both situations, with some subtle differences in learning style. This paper provides an overview of this work.
Resumo:
This paper gives a detailed account of the content analysis method developed at Queen's University Belfast to measure critical thinking during group learning, as used in our controlled comparisons between learning in face-to-face and computer conference seminars. From Garrison's 5 stages of critical thinking, and Henri's cognitive skills needed in CMC, we have developed two research instruments: a student questionnaire and this content analysis method. The content analysis relies on identifying, within transcripts, examples of indicators of obviously critical and obviously uncritical thinking, from which several critical thinking ratios can be calculated.