983 resultados para Grasses crop
Resumo:
This research investigates the contribution that Geographic Information Systems (GIS) can make to the land suitability process used to determine the effects of a climate change scenario. The research is intended to redress the severe under representation of Developing countries within the literature examining the impacts of climatic change upon crop productivity. The methodology adopts some of the Intergovernmental Panel on Climate Change (IPCC) estimates for regional climate variations, based upon General Circulation Model predictions (GCMs) and applies them to a baseline climate for Bangladesh. Utilising the United Nations Food & Agricultural Organisation's Agro-ecological Zones land suitability methodology and crop yield model, the effects of the scenario upon agricultural productivity on 14 crops are determined. A Geographic Information System (IDRISI) is adopted in order to facilitate the methodology, in conjunction with a specially designed spreadsheet, used to determine the yield and suitability rating for each crop. A simple optimisation routine using the GIS is incorporated to provide an indication of the 'maximum theoretical' yield available to the country, should the most calorifically significant crops be cultivated on each land unit both before and after the climate change scenario. This routine will provide an estimate of the theoretical population supporting capacity of the country, both now and in the future, to assist with planning strategies and research. The research evaluates the utility of this alternative GIS based methodology for the land evaluation process and determines the relative changes in crop yields that may result from changes in temperature, photosynthesis and flooding hazard frequency. In summary, the combination of a GIS and a spreadsheet was successful, the yield prediction model indicates that the application of the climate change scenario will have a deleterious effect upon the yields of the study crops. Any yield reductions will have severe implications for agricultural practices. The optimisation routine suggests that the 'theoretical maximum' population supporting capacity is well in excess of current and future population figures. If this agricultural potential could be realised however, it may provide some amelioration from the effects of climate change.
Resumo:
Several cationic initiator systems were developed and used to polymerise oxetane with two oxonium ion initiator systems being investigated in depth. The first initiator system was generated by the elimination of a chloride group from a chloro methyl ethyl ether. Adding a carbonyl co-catalyst to a carbocationic centre generated the second initiator system. It was found that the anion used to stabilise the initiator was critical to the initial rate of polymerisation of oxetane with hexafluoroantimonate resulting in the fastest polymerisations. Both initiator systems could be used at varying monomer to initiator concentrations to control the molecular number average, Mn, of the resultant polymer. Both initiator systems showed living characteristics and were used to polymerise further monomers and generate higher molecular weight material and block copolymers. Oxetane and 3,3-dimethyl oxetane can both be polymerised using either oxonium ion initiator system in a variety of DCM or DCM/1,4-dioxane solvent mixtures. The level of 1,4-dioxane does have an impact on the initial rate of polymerisation with higher levels resulting in lower initial rates of polymerisation but do tend to result in higher polydispersities. The level of oligomer formation is also reduced as the level of 1,4-dioxane is increased. 3,3-bis-bromomethyl oxetane was also polymerised but a large amount of hyperbranching was seen at the bromide site resulting in a difficult to solvate polymer system. Multifunctional initiator systems were also generated using the halide elimination reactions with some success being achieved with 1,3,5-tris-bromomethyl-2,4,6-tris-methyl-benzene derived initiator system. This offered some control over the molecular number average of the resultant polymer system.
Resumo:
The primary objective of this work is to relate the biomass fuel quality to fast pyrolysis-oil quality in order to identify key biomass traits which affect pyrolysis-oil stability. During storage the pyrolysis-oil becomes more viscous due to chemical and physical changes, as reactions and volatile losses occur due to aging. The reason for oil instability begins within the pyrolysis reactor during pyrolysis in which the biomass is rapidly heated in the absence of oxygen, producing free radical volatiles which are then quickly condensed to form the oil. The products formed do not reach thermodynamic equilibrium and in tum the products react with each other to try to achieve product stability. The first aim of this research was to develop and validate a rapid screening method for determining biomass lignin content in comparison to traditional, time consuming and hence costly wet chemical methods such as Klason. Lolium and Festuca grasses were selected to validate the screening method, as these grass genotypes exhibit a low range of Klason /Acid Digestible Fibre lignin contents. The screening methodology was based on the relationship between the lignin derived products from pyrolysis and the lignin content as determined by wet chemistry. The second aim of the research was to determine whether metals have an affect on fast pyrolysis products, and if any clear relationships can be deduced to aid research in feedstock selection for fast pyrolysis processing. It was found that alkali metals, particularly Na and K influence the rate and yield of degradation as well the char content. Pre-washing biomass with water can remove 70% of the total metals, and improve the pyrolysis product characteristics by increasing the organic yield, the temperature in which maximum liquid yield occurs and the proportion of higher molecular weight compounds within the pyrolysis-oil. The third aim identified these feedstock traits and relates them to the pyrolysis-oil quality and stability. It was found that the mineral matter was a key determinant on pyrolysis-oil yield compared to the proportion of lignin. However the higher molecular weight compounds present in the pyrolysis-oil are due to the lignin, and can cause instability within the pyrolysis-oil. The final aim was to investigate if energy crops can be enhanced by agronomical practices to produce a biomass quality which is attractive to the biomass conversion community, as well as giving a good yield to the farmers. It was found that the nitrogen/potassium chloride fertiliser treatments enhances Miscanthus qualities, by producing low ash, high volatiles yields with acceptable yields for farmers. The progress of senescence was measured in terms of biomass characteristics and fast pyrolysis product characteristics. The results obtained from this research are in strong agreement with published literature, and provides new information on quality traits for biomass which affects pyrolysis and pyrolysis-oils.
Resumo:
This article compares the tactic of trashing genetically modified crops in activist campaigns in Britain and France. In Britain, most crop trashing was carried out covertly, while in France most activists undertook open, public actions. In seeking an explanation for this, the article shows that the analysis of political opportunities, dominant in comparative studies of social movements, can only take us so far. While it helps explain the occurrence of direct action, it is much less useful in explaining the tactical differences between each country. It is argued that a fuller explanation requires an understanding of how action was shaped by different activist traditions. In France, action was staged as a demonstration of serious, responsible, collective Republican citizenship; in the United Kingdom, activists combined a sceptical view of legality developing from anarchist individualism with an explicitly non-threatening, playful, ethos. The article concludes that a focus on activist traditions can provide an effective bridge between structural and cultural approaches to understanding the determinants of social movement action.
Thermochemical characterisation of various biomass feedstock and bio-oil generated by fast pyrolysis
Resumo:
The projected decline in fossil fuel availability, environmental concerns, and security of supply attract increased interest in renewable energy derived from biomass. Fast pyrolysis is a possible thermochemical conversion route for the production of bio-oil, with promising advantages. The purpose of the experiments reported in this thesis was to extend our understanding of the fast pyrolysis process for straw, perennial grasses and hardwoods, and the implications of selective pyrolysis, crop harvest and storage on the thermal decomposition products. To this end, characterisation and laboratory-scale fast pyrolysis were conducted on the available feedstocks, and their products were compared. The variation in light and medium volatile decomposition products was investigated at different pyrolysis temperatures and heating rates, and a comparison of fast and slow pyrolysis products was conducted. Feedstocks from different harvests, storage durations and locations were characterised and compared in terms of their fuel and chemical properties. A range of analytical (e.g. Py-GC-MS and TGA) and processing equipment (0.3 kg/h and 1.0 kg/h fast pyrolysis reactors and 0.15 kg slow pyrolysis reactor) was used. Findings show that the high bio-oil and char heating value, and low water content of willow short rotation coppice (SRC) make this crop attractive for fast pyrolysis processing compared to the other investigated feedstocks in this project. From the analytical sequential investigation of willow SRC, it was found that the volatile product distribution can be tailored to achieve a better final product, by a variation of the heating rate and temperature. Time of harvest was most influential on the fuel properties of miscanthus; overall the late harvest produced the best fuel properties (high HHV, low moisture content, high volatile content, low ash content), and storage of the feedstock reduced the moisture and acid content.
Resumo:
A cikkben paneladatok segítségével a magyar gabonatermesztő üzemek 2001 és 2009 közötti technikai hatékonyságát vizsgáljuk. A technikai hatékonyság szintjének becslésére egy hagyományos sztochasztikus határok modell (SFA) mellett a látens csoportok modelljét (LCM) használjuk, amely figyelembe veszi a technológiai különbségeket is. Eredményeink arra utalnak, hogy a technológiai heterogenitás fontos lehet egy olyan ágazatban is, mint a szántóföldi növénytermesztés, ahol viszonylag homogén technológiát alkalmaznak. A hagyományos, azonos technológiát feltételező és a látens osztályok modelljeinek összehasonlítása azt mutatja, hogy a gabonatermesztő üzemek technikai hatékonyságát a hagyományos modellek alábecsülhetik. _____ The article sets out to analyse the technical efficiency of Hungarian crop farms between 2001 and 2009, using panel data and employing both standard stochastic frontier analysis and the latent class model (LCM) to estimate technical efficiency. The findings suggest that technological heterogeneity plays an important role in the crop sector, though it is traditionally assumed to employ homogenous technology. A comparison of standard SFA models that assumes the technology is common to all farms and LCM estimates highlights the way the efficiency of crop farms can be underestimated using traditional SFA models.
Resumo:
Acknowledgement Construction and maintenance of the experiment system was funded by the state Special Fund for Agro-scientific Research in the Public Interest “Climate Change Impacts on Crop Production and Mitigation” under a grant number 200903003. This work was financially supported by Ministry of Science and Technology of China under a grant number 2012BAC19B01 and Department of Science and Technology of Jiangsu province under a grant number BK20150684. The international cooperation was funded by “111 project” (B12009) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). The contribution of Pete Smith was funded by the Chinese Ministry of Agriculture and the United Kingdom Department for Environment, Food and Rural Affairs (DEFRA) under UK-China Sustainable Agriculture Innovation Network (SAIN). The contribution of Timothy Filley was also funded by the state foreign expert agency under a project of Foreign High-end expert program. The authors thank Jiangsu Tianniang Agro-Technology Company Ltd. for the assistance in maintaining the experiment system.
Resumo:
Funded by UK's Biotechnology and Biological Sciences Research Council (BBSRC) Department for Environment, Food and Rural Affairs (DEFRA). Grant Number: LK0863 BBSRC strategic programme Grant on Energy Grasses & Bio-refining. Grant Number: BBS/E/W/10963A01 OPTIMISC. Grant Number: FP7-289159 WATBIO. Grant Number: FP7-311929 Innovate UK/BBSRC ‘MUST’. Grant Number: BB/N016149/1
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
Energy policies around the world are mandating for a progressive increase in renewable energy production. Extensive grassland areas with low productivity and land use limitations have become target areas for sustainable energy production to avoid competition with food production on the limited available arable land resources and minimize further conversion of grassland into intensively managed energy cropping systems or abandonment. However, the high spatio-temporal variability in botanical composition and biochemical parameters is detrimental to reliable assessment of biomass yield and quality regarding anaerobic digestion. In an approach to assess the performance for predicting biomass using a multi-sensor combination including NIRS, ultra-sonic distance measurements and LAI-2000, biweekly sensor measurements were taken on a pure stand of reed canary grass (Phalaris aruninacea), a legume grass mixture and a diversity mixture with thirty-six species in an experimental extensive two cut management system. Different combinations of the sensor response values were used in multiple regression analysis to improve biomass predictions compared to exclusive sensors. Wavelength bands for sensor specific NDVI-type vegetation indices were selected from the hyperspectral data and evaluated for the biomass prediction as exclusive indices and in combination with LAI and ultra-sonic distance measurements. Ultrasonic sward height was the best to predict biomass in single sensor approaches (R² 0.73 – 0.76). The addition of LAI-2000 improved the prediction performance by up to 30% while NIRS barely improved the prediction performance. In an approach to evaluate broad based prediction of biochemical parameters relevant for anaerobic digestion using hyperspectral NIRS, spectroscopic measurements were taken on biomass from the Jena-Experiment plots in 2008 and 2009. Measurements were conducted on different conditions of the biomass including standing sward, hay and silage and different spectroscopic devices to simulate different preparation and measurement conditions along the process chain for biogas production. Best prediction results were acquired for all constituents at laboratory measurement conditions with dried and ground samples on a bench-top NIRS system (RPD > 3) with a coefficient of determination R2 < 0.9. The same biomass was further used in batch fermentation to analyse the impact of species richness and functional group composition on methane yields using whole crop digestion and pressfluid derived by the Integrated generation of solid Fuel and Biogas from Biomass (IFBB) procedure. Although species richness and functional group composition were largely insignificant, the presence of grasses and legumes in the mixtures were most determining factors influencing methane yields in whole crop digestion. High lignocellulose content and a high C/N ratio in grasses may have reduced the digestibility in the first cut material, excess nitrogen may have inhibited methane production in second cut legumes, while batch experiments proved superior specific methane yields of IFBB press fluids and showed that detrimental effects of the parent material were reduced by the technical treatment
Resumo:
Report produced by the The Department of Agriculture and Land Stewardship, Climatology Bureau. Weather report released by the USDA National Agricultural Statistical Service. The report is released weekly from April through October. Formally titled: Iowa Crop and Weather Report
Resumo:
Report produced by the The Department of Agriculture and Land Stewardship, Climatology Bureau. Weather report released by the USDA National Agricultural Statistical Service. The report is released weekly from April through October. Formally titled: Iowa Crop and Weather Report
Resumo:
Report produced by the The Department of Agriculture and Land Stewardship, Climatology Bureau. Weather report released by the USDA National Agricultural Statistical Service. The report is released weekly from April through October. Formally titled: Iowa Crop and Weather Report
Resumo:
Report produced by the The Department of Agriculture and Land Stewardship, Climatology Bureau. Weather report released by the USDA National Agricultural Statistical Service. The report is released weekly from April through October. Formally titled: Iowa Crop and Weather Report
Resumo:
Report produced by the The Department of Agriculture and Land Stewardship, Climatology Bureau. Weather report released by the USDA National Agricultural Statistical Service. The report is released weekly from April through October. Formally titled: Iowa Crop and Weather Report