961 resultados para Graph generators
Resumo:
El proyecto consiste en un entorno gráfico cuyo fin es el de visualizar, estudiar e interpretar la conservación de código genético existente entre los diferentes genomas. Una interface que permite cargar hasta ocho genomas para ser comparados en detalle, por pares o entre todos ellos a la vez. El gráfico que se muestra en la interfaz, representa los Maximal Unique Matchings entre cada par de genomas, lo que significa coincidencias de la mayor longitud posible no repetidas, en las secuencias de ADN de las especies comparadas. La finalidad es el estudio de las evoluciones que han ido apareciendo entre diferentes organismos o los genes que comparten unas especies con otras.
Resumo:
Objective: To assess reproducibility and feasibility of amusculoskeletal ultrasound (US) score for rheumatoid arthritis amongrheumatologist with diverse expertise in US, working in private orhospital practice.Methods: The Swiss Sonography in Arthritis and Rheumatism(SONAR) group has developed a semi-quantitative score for RA usingOMERACT criteria for synovitis and erosion. The score was taught torheumatologists trained in US through two workshops. Subsequently,they were encouraged to practice in their office. For the study, we used6 US machines of different quality, each with a different patient.19 readers randomly selected among rheumatologists who haveattended both workshops, were asked to score anonymously at leastone patient. To assess whether some factors influence the score, weasked each reader to answer questionnaire describing his experiencewith US.Results: 19 rheumatologists have performed 29 scans, each patienthaving been evaluated by 4 to 6 readers. Median time for examcompletion was 20 minutes (range 15 to 60 mn). 53% ofrheumatologists work in private practice. Graph 1 show the global greyscale score for each patient. Weighted kappa was calculated for eachpair of reader using stata11. Almost all kappa of poor agreement wereobtained with a low quality device or by an assessor who havepreviously performed less than 5 scores himself.Conclusions: This is the first study to show an US score for RAfeasible by rheumatologists with diverse expertise in US both in privateand hospital practice. Reproducibility seemed to be influenced by thequality of device and previous experience with the score.
Resumo:
The usual way to investigate the statistical properties of finitely generated subgroups of free groups, and of finite presentations of groups, is based on the so-called word-based distribution: subgroups are generated (finite presentations are determined) by randomly chosen k-tuples of reduced words, whose maximal length is allowed to tend to infinity. In this paper we adopt a different, though equally natural point of view: we investigate the statistical properties of the same objects, but with respect to the so-called graph-based distribution, recently introduced by Bassino, Nicaud and Weil. Here, subgroups (and finite presentations) are determined by randomly chosen Stallings graphs whose number of vertices tends to infinity. Our results show that these two distributions behave quite differently from each other, shedding a new light on which properties of finitely generated subgroups can be considered frequent or rare. For example, we show that malnormal subgroups of a free group are negligible in the raph-based distribution, while they are exponentially generic in the word-based distribution. Quite surprisingly, a random finite presentation generically presents the trivial group in this new distribution, while in the classical one it is known to generically present an infinite hyperbolic group.
Resumo:
The dynamical analysis of large biological regulatory networks requires the development of scalable methods for mathematical modeling. Following the approach initially introduced by Thomas, we formalize the interactions between the components of a network in terms of discrete variables, functions, and parameters. Model simulations result in directed graphs, called state transition graphs. We are particularly interested in reachability properties and asymptotic behaviors, which correspond to terminal strongly connected components (or "attractors") in the state transition graph. A well-known problem is the exponential increase of the size of state transition graphs with the number of network components, in particular when using the biologically realistic asynchronous updating assumption. To address this problem, we have developed several complementary methods enabling the analysis of the behavior of large and complex logical models: (i) the definition of transition priority classes to simplify the dynamics; (ii) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to compact state transition graphs and directly generate compressed representations, emphasizing relevant transient and asymptotic dynamical properties. The power of an approach combining these different methods is demonstrated by applying them to a recent multilevel logical model for the network controlling CD4+ T helper cell response to antigen presentation and to a dozen cytokines. This model accounts for the differentiation of canonical Th1 and Th2 lymphocytes, as well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these methods have been implemented into the software GINsim, which enables the definition, the analysis, and the simulation of logical regulatory graphs.
Resumo:
Este trabajo desarrolla el proceso de diseño e implementación de una interfaz web que permite la exploración en detalle de las relaciones entre genomas completos. La interfaz permite la comparación simultánea de nueve genomas, representando en cada gráfica las relaciones entre cada par de genomas junto los genes identificados de cada uno de ellos. Es capaz de trabajar con genomas del dominio Eukaryota y se adapta a la capacidad de cómputo de la máquina cliente. La información representada son MUMs (Maximal Unique Matching, secuencia máxima y única encontrada en ambos genomas) y SuperMUMs (agrupación de MUMs mediante Approximate String Matching). Los datos son previamente calculados y accesibles desde un servidor web.
Resumo:
From toddler to late teenager, the macroscopic pattern of axonal projections in the human brain remains largely unchanged while undergoing dramatic functional modifications that lead to network refinement. These functional modifications are mediated by increasing myelination and changes in axonal diameter and synaptic density, as well as changes in neurochemical mediators. Here we explore the contribution of white matter maturation to the development of connectivity between ages 2 and 18 y using high b-value diffusion MRI tractography and connectivity analysis. We measured changes in connection efficacy as the inverse of the average diffusivity along a fiber tract. We observed significant refinement in specific metrics of network topology, including a significant increase in node strength and efficiency along with a decrease in clustering. Major structural modules and hubs were in place by 2 y of age, and they continued to strengthen their profile during subsequent development. Recording resting-state functional MRI from a subset of subjects, we confirmed a positive correlation between structural and functional connectivity, and in addition observed that this relationship strengthened with age. Continuously increasing integration and decreasing segregation of structural connectivity with age suggests that network refinement mediated by white matter maturation promotes increased global efficiency. In addition, the strengthening of the correlation between structural and functional connectivity with age suggests that white matter connectivity in combination with other factors, such as differential modulation of axonal diameter and myelin thickness, that are partially captured by inverse average diffusivity, play an increasingly important role in creating brain-wide coherence and synchrony.
Resumo:
An ab initio structure prediction approach adapted to the peptide-major histocompatibility complex (MHC) class I system is presented. Based on structure comparisons of a large set of peptide-MHC class I complexes, a molecular dynamics protocol is proposed using simulated annealing (SA) cycles to sample the conformational space of the peptide in its fixed MHC environment. A set of 14 peptide-human leukocyte antigen (HLA) A0201 and 27 peptide-non-HLA A0201 complexes for which X-ray structures are available is used to test the accuracy of the prediction method. For each complex, 1000 peptide conformers are obtained from the SA sampling. A graph theory clustering algorithm based on heavy atom root-mean-square deviation (RMSD) values is applied to the sampled conformers. The clusters are ranked using cluster size, mean effective or conformational free energies, with solvation free energies computed using Generalized Born MV 2 (GB-MV2) and Poisson-Boltzmann (PB) continuum models. The final conformation is chosen as the center of the best-ranked cluster. With conformational free energies, the overall prediction success is 83% using a 1.00 Angstroms crystal RMSD criterion for main-chain atoms, and 76% using a 1.50 Angstroms RMSD criterion for heavy atoms. The prediction success is even higher for the set of 14 peptide-HLA A0201 complexes: 100% of the peptides have main-chain RMSD values < or =1.00 Angstroms and 93% of the peptides have heavy atom RMSD values < or =1.50 Angstroms. This structure prediction method can be applied to complexes of natural or modified antigenic peptides in their MHC environment with the aim to perform rational structure-based optimizations of tumor vaccines.
Resumo:
Motivation. The study of human brain development in itsearly stage is today possible thanks to in vivo fetalmagnetic resonance imaging (MRI) techniques. Aquantitative analysis of fetal cortical surfacerepresents a new approach which can be used as a markerof the cerebral maturation (as gyration) and also forstudying central nervous system pathologies [1]. However,this quantitative approach is a major challenge forseveral reasons. First, movement of the fetus inside theamniotic cavity requires very fast MRI sequences tominimize motion artifacts, resulting in a poor spatialresolution and/or lower SNR. Second, due to the ongoingmyelination and cortical maturation, the appearance ofthe developing brain differs very much from thehomogenous tissue types found in adults. Third, due tolow resolution, fetal MR images considerably suffer ofpartial volume (PV) effect, sometimes in large areas.Today extensive efforts are made to deal with thereconstruction of high resolution 3D fetal volumes[2,3,4] to cope with intra-volume motion and low SNR.However, few studies exist related to the automatedsegmentation of MR fetal imaging. [5] and [6] work on thesegmentation of specific areas of the fetal brain such asposterior fossa, brainstem or germinal matrix. Firstattempt for automated brain tissue segmentation has beenpresented in [7] and in our previous work [8]. Bothmethods apply the Expectation-Maximization Markov RandomField (EM-MRF) framework but contrary to [7] we do notneed from any anatomical atlas prior. Data set &Methods. Prenatal MR imaging was performed with a 1-Tsystem (GE Medical Systems, Milwaukee) using single shotfast spin echo (ssFSE) sequences (TR 7000 ms, TE 180 ms,FOV 40 x 40 cm, slice thickness 5.4mm, in plane spatialresolution 1.09mm). Each fetus has 6 axial volumes(around 15 slices per volume), each of them acquired inabout 1 min. Each volume is shifted by 1 mm with respectto the previous one. Gestational age (GA) ranges from 29to 32 weeks. Mother is under sedation. Each volume ismanually segmented to extract fetal brain fromsurrounding maternal tissues. Then, in-homogeneityintensity correction is performed using [9] and linearintensity normalization is performed to have intensityvalues that range from 0 to 255. Note that due tointra-tissue variability of developing brain someintensity variability still remains. For each fetus, ahigh spatial resolution image of isotropic voxel size of1.09 mm is created applying [2] and using B-splines forthe scattered data interpolation [10] (see Fig. 1). Then,basal ganglia (BS) segmentation is performed on thissuper reconstructed volume. Active contour framework witha Level Set (LS) implementation is used. Our LS follows aslightly different formulation from well-known Chan-Vese[11] formulation. In our case, the LS evolves forcing themean of the inside of the curve to be the mean intensityof basal ganglia. Moreover, we add local spatial priorthrough a probabilistic map created by fitting anellipsoid onto the basal ganglia region. Some userinteraction is needed to set the mean intensity of BG(green dots in Fig. 2) and the initial fitting points forthe probabilistic prior map (blue points in Fig. 2). Oncebasal ganglia are removed from the image, brain tissuesegmentation is performed as described in [8]. Results.The case study presented here has 29 weeks of GA. Thehigh resolution reconstructed volume is presented in Fig.1. The steps of BG segmentation are shown in Fig. 2.Overlap in comparison with manual segmentation isquantified by the Dice similarity index (DSI) equal to0.829 (values above 0.7 are considered a very goodagreement). Such BG segmentation has been applied on 3other subjects ranging for 29 to 32 GA and the DSI hasbeen of 0.856, 0.794 and 0.785. Our segmentation of theinner (red and blue contours) and outer cortical surface(green contour) is presented in Fig. 3. Finally, torefine the results we include our WM segmentation in theFreesurfer software [12] and some manual corrections toobtain Fig.4. Discussion. Precise cortical surfaceextraction of fetal brain is needed for quantitativestudies of early human brain development. Our workcombines the well known statistical classificationframework with the active contour segmentation forcentral gray mater extraction. A main advantage of thepresented procedure for fetal brain surface extraction isthat we do not include any spatial prior coming fromanatomical atlases. The results presented here arepreliminary but promising. Our efforts are now in testingsuch approach on a wider range of gestational ages thatwe will include in the final version of this work andstudying as well its generalization to different scannersand different type of MRI sequences. References. [1]Guibaud, Prenatal Diagnosis 29(4) (2009). [2] Rousseau,Acad. Rad. 13(9), 2006, [3] Jiang, IEEE TMI 2007. [4]Warfield IADB, MICCAI 2009. [5] Claude, IEEE Trans. Bio.Eng. 51(4) (2004). [6] Habas, MICCAI (Pt. 1) 2008. [7]Bertelsen, ISMRM 2009 [8] Bach Cuadra, IADB, MICCAI 2009.[9] Styner, IEEE TMI 19(39 (2000). [10] Lee, IEEE Trans.Visual. And Comp. Graph. 3(3), 1997, [11] Chan, IEEETrans. Img. Proc, 10(2), 2001 [12] Freesurfer,http://surfer.nmr.mgh.harvard.edu.
Resumo:
Ultrasound segmentation is a challenging problem due to the inherent speckle and some artifacts like shadows, attenuation and signal dropout. Existing methods need to include strong priors like shape priors or analytical intensity models to succeed in the segmentation. However, such priors tend to limit these methods to a specific target or imaging settings, and they are not always applicable to pathological cases. This work introduces a semi-supervised segmentation framework for ultrasound imaging that alleviates the limitation of fully automatic segmentation, that is, it is applicable to any kind of target and imaging settings. Our methodology uses a graph of image patches to represent the ultrasound image and user-assisted initialization with labels, which acts as soft priors. The segmentation problem is formulated as a continuous minimum cut problem and solved with an efficient optimization algorithm. We validate our segmentation framework on clinical ultrasound imaging (prostate, fetus, and tumors of the liver and eye). We obtain high similarity agreement with the ground truth provided by medical expert delineations in all applications (94% DICE values in average) and the proposed algorithm performs favorably with the literature.
Resumo:
Specific properties emerge from the structure of large networks, such as that of worldwide air traffic, including a highly hierarchical node structure and multi-level small world sub-groups that strongly influence future dynamics. We have developed clustering methods to understand the form of these structures, to identify structural properties, and to evaluate the effects of these properties. Graph clustering methods are often constructed from different components: a metric, a clustering index, and a modularity measure to assess the quality of a clustering method. To understand the impact of each of these components on the clustering method, we explore and compare different combinations. These different combinations are used to compare multilevel clustering methods to delineate the effects of geographical distance, hubs, network densities, and bridges on worldwide air passenger traffic. The ultimate goal of this methodological research is to demonstrate evidence of combined effects in the development of an air traffic network. In fact, the network can be divided into different levels of âeurooecohesionâeuro, which can be qualified and measured by comparative studies (Newman, 2002; Guimera et al., 2005; Sales-Pardo et al., 2007).
Resumo:
Network analysis naturally relies on graph theory and, more particularly, on the use of node and edge metrics to identify the salient properties in graphs. When building visual maps of networks, these metrics are turned into useful visual cues or are used interactively to filter out parts of a graph while querying it, for instance. Over the years, analysts from different application domains have designed metrics to serve specific needs. Network science is an inherently cross-disciplinary field, which leads to the publication of metrics with similar goals; different names and descriptions of their analytics often mask the similarity between two metrics that originated in different fields. Here, we study a set of graph metrics and compare their relative values and behaviors in an effort to survey their potential contributions to the spatial analysis of networks.
Resumo:
We define equivariant semiprojectivity for C* -algebras equipped with actions of compact groups. We prove that the following examples are equivariantly semiprojective: A. Arbitrary finite dimensional C*-algebras with arbitrary actions of compact groups. - B. The Cuntz algebras Od and extended Cuntz algebras Ed, for finite d, with quasifree actions of compact groups. - C. The Cuntz algebra O∞ with any quasifree action of a finite group. For actions of finite groups, we prove that equivariant semiprojectivity is equiv- alent to a form of equivariant stability of generators and relations. We also prove that if G is finite, then C*(G) is graded semiprojective.
Resumo:
A major advance in our understanding of the natural history of Schistosoma haematobium-related morbidity has come through the introduction of the portable ultrasound machines for non-invasive examination of the kidneys and bladder. With the use of generators or battery packs to supply power in non-clinical field settings, and with the use of instant photography or miniaturized thermal printers to record permanent images, it is possible to examine scores of individuals in endemic communities every day. Broad-based ultrasound screening has allowed better definition of age-specific disease risks in urinary schistosomiasis. Results indicate that urinary tract abnormalities are common (18% overall prevalence) in S. haematobium transmission areas, with a 2-4% risk of either severe bladder abnormality or advanced ureteral obstruction. In longitudinal surveys, ultrasound studies have shown that praziquantel and metrifonate therapy are rapidly effective in reversing urinary tract abnormalities among children. The benefits of treating adults are less well known, but research in progress should help to define this issue. Similarly, the prognosis of specific ultrasound findings needs to be clarified, and the ease of sonographic examination will make such long-term follow-up studies feasible. In summary, the painless, quick, and reproducible ultrasound examination has become an essential tool in the study of urinary schistosomiasis.
Resumo:
Aquest estudi permet tenir una visió de les possibilitats reals dels generadors de codi, les seves característiques més destacades i les seves mancances. Finalment s'inclou una proposta de millora per incorporar als generadors de codi.
Resumo:
Aquest TFC pretén investigar en el concepte de generadors de seqüencies pseudoaleatories amb la finalitat d'implementar un generador amb qualitats òptimes per al xifratge de dades.