943 resultados para Gradient gravity torque
Resumo:
The putative Ca2+-channel blocker LaCl3 prevented the gravitropic bending of cut snapdragon (Antirrhinum majus L.) spikes (S. Philosoph-Hadas, S. Meir, I. Rosenberger, A.H. Halevy [1996] Plant Physiol 110: 301–310) and inhibited stem curvature to a greater extent than vertical and horizontal stem elongation at the bending zone. This might indicate that LaCl3, which modulates cytosolic Ca2+, does not influence general stem-growth processes but may specifically affect other gravity-associated processes occurring at the stem-bending zone. Two such specific gravity-dependent events were found to occur in the bending zone of snapdragon spikes: sedimentation of starch-containing chloroplasts at the bottom of stem cortex cells, as seen in cross-sections, and establishment of an ethylene gradient across the stem. Our results show that the lateral sedimentation of chloroplasts associated with gravity sensing was prevented in cross-sections taken from the bending zone of LaCl3-treated and subsequently gravistimulated spikes and that LaCl3 completely prevented the gravity-induced, asymmetric ethylene production established across the stem-bending zone. These data indicate that LaCl3 inhibits stem curvature of snapdragon spikes by preventing several gravity-dependent processes. Therefore, we propose that the gravitropic response of shoots could be mediated through a Ca2+-dependent pathway involving modulation of cytosolic Ca2+ at various stages.
Resumo:
A recently described experimental system for analyzing the mode of action of a morphogen gradient involves the in situ hybridization of sectioned tissue constructs. In these constructs, a source of activin signaling induces the transcription of several mesodermal genes in blastula animal caps, according to the position of cells in a concentration gradient. New experiments show that activin-loaded beads emit a signal for only 2 hr and that the same cell can be induced to express different genes. We determine the position in the gradient and the time after the start of activin signaling at which early genes, including Mix1, Xpo, Xwnt8, Xchd, and Xlim1, are activated, relative to the previously tested genes Xbra and Xgsc.
Resumo:
The SecY protein of Escherichia coli is an integral membrane component of the protein export apparatus. Suppressor mutations in the secY gene (prlA alleles) have been isolated that restore the secretion of precursor proteins with defective signal sequences. These mutations have never been shown to affect the translocation of wild-type precursor proteins. Here, we report that prlA suppressor mutations relieve the proton-motive force (pmf) dependency of the translocation of wild-type precursors, both in vivo and in vitro. Furthermore, the proton-motive force dependency of the translocation of a precursor with a stably folded domain in the mature region was suppressed by prlA mutations in vitro. These data show that prlA mutations cause a general relaxation of the export apparatus rather than a specific change that results in bypassing of the recognition of the signal sequence. In addition, these results are indicative for a mechanism in which the proton-motive force stimulates translocation by altering the conformation of the translocon.
Resumo:
Slope of terrain is an important orienting gradient affecting the goal-directed locomotion of animals. Its significance was assessed in experiment 1 by training rats to find in darkness a feeder on the top of a low cone (80-cm base, 0- to 4-cm high). A computerized infrared tracking system monitoring the rat's position in darkness showed that the path length on the cone surface was inversely proportional to cone height. A device allowing continuous generation of slope-guided locomotion was used in experiment 2. This device consists of a 1-m arena, the floor of which can be supported at a point corresponding to the position of one of three equidistant feeders located 17 cm from its center. The arena is inclined by the locomotion of the rat to a plane passing through the elevated (2- or 4-cm) feeder, the rat's center of gravity, and a point at the edge of the arena resting on the floor. The multitude of such planes generated by the rat's locomotion forms the surface of a virtual cone, the top of which is formed by the feeder. Additional path (difference between distance traveled and shortest distance of the animal from the goal at the onset of inclination) is inversely related to the incline of the arena and is a sensitive measure of performance in this type of vestibular navigation.
Resumo:
Under conditions (0.2% CO2; 1% O2) that allow high rates of photosynthesis, chlorophyll fluorescence was measured simultaneously with carbon assimilation at various light intensities in spinach (Spinacia oleracea) leaves. Using a stoichiometry of 3 ATP/CO2 and the known relationship between ATP synthesis rate and driving force (Delta pH), we calculated the light-dependent pH gradient (Delta pH) across the thylakoid membrane in intact leaves. These Delta pH values were correlated with the photochemical (qP) and nonphotochemical (qN) quenching of chlorophyll fluorescence and with the quantum yield of photosystem II (phiPSII). At Delta pH > 2.1 all three parameters (qP, qN, and phiPSII) changed very steeply with increasing DeltapH (decreasing pH in the thylakoid). The observed pH dependences followed hexacooperative titration curves with slightly different pKa values. The significance of the steep pH dependences with slightly different pKa values is discussed in relation to the regulation of photosynthetic electron transport in intact leaves.
Resumo:
We prove global existence of nonnegative solutions to the one dimensional degenerate parabolic problems containing a singular term. We also show the global quenching phenomena for L1 initial datums. Moreover, the free boundary problem is considered in this paper.
Resumo:
A qualidade óssea, bem como a estabilidade inicial dos implantes, está diretamente relacionada com o sucesso das reabilitações na implantodontia. O presente estudo teve como objetivo analisar a correlação entre índices radiomorfométricos de densidade óssea por meio de radiografias panorâmicas, perfil de qualidade óssea com o auxílio de Tomografia Computadorizada de Feixe Cônico (TCFC) com o uso do software de imagens OsiriX, Análise da Frequência de Ressonância (RFA) e Torque de Inserção do implante. Foram avaliados 160 implantes de 72 indivíduos, com média etária de 55,5 (±10,5) anos. Nas radiografias panorâmicas foram obtidos os índices IM, IPM e ICM, e nas tomografias computadorizadas de feixe cônico, os valores de pixels e a espessura da cortical da crista óssea alveolar, além da estabilidade primária por meio do torque de inserção e análise da frequência de ressonância. Os resultados foram analisados pelo coeficiente de correlação de Spearman, para p<= 0,01 foi obtido entre o torque de inserção e valores de pixels (0.330), o torque de inserção e a espessura da cortical da crista alveolar (0.339), o torque de inserção e o ISQ vestibulo-lingual (0.193), os valores de pixels e espessura da cortical da crista alveolar (0.377), as duas direções vestíbulo-lingual e mesio-distal do ISQ (0.674), o ISQ vestíbulo-lingual e a espessura da cortical da crista alveolar (0.270); os índices radiomorfométricos foram correlacionados entre eles e para p<= 0,05 foi obtido entre torque de inserção e ISQ mesio-distal (0.131), entre o ISQ vestibulo-lingual e os valores de pixels (0.156) e ISQ mesio-distal e IPMI esquerdo (0.149) e ISQ mesio-distal e IPMS esquerdo (0.145). Existe correlação entre a TCFC, o torque de inserção e a RFA na avaliação da qualidade óssea. É possível utilizar, pré-cirurgicamente, os exames de TCFC para avaliar a qualidade e quantidade óssea, tendo em vista as correlações obtidas neste estudo.
Resumo:
We theoretically show how the spin orientation of a single magnetic adatom can be controlled by spin polarized electrons in a scanning tunneling microscope configuration. The underlying physical mechanism is spin assisted inelastic tunneling. By changing the direction of the applied current, the orientation of the magnetic adatom can be completely reversed on a time scale that ranges from a few nanoseconds to microseconds, depending on bias and temperature. The changes in the adatom magnetization direction are, in turn, reflected in the tunneling conductance.
Resumo:
Global air surface temperatures and precipitation have increased over the last several decades resulting in a trend of greening across the Circumpolar Arctic. The spatial variability of warming and the inherent effects on plant communities has not proven to be uniform or homogeneous on global or local scales. We can apply remote sensing vegetation indices such as the Normalized Difference Vegetation Index (NDVI) to map and monitor vegetation change (e.g., phenology, greening, percent cover, and biomass) over time. It is important to document how Arctic vegetation is changing, as it will have large implications related to global carbon and surface energy budgets. The research reported here examined vegetation greening across different spatial and temporal scales at two disparate Arctic sites: Apex River Watershed (ARW), Baffin Island, and Cape Bounty Arctic Watershed Observatory (CBAWO), Melville Island, NU. To characterize the vegetation in the ARW, high spatial resolution WorldView-2 data were processed to create a supervised land-cover classification and model percent vegetation cover (PVC) (a similar process had been completed in a previous study for the CBAWO). Meanwhile, NDVI data spanning the past 30 years were derived from intermediate resolution Landsat data at the two Arctic sites. The land-cover classifications at both sites were used to examine the Landsat NDVI time series by vegetation class. Climate variables (i.e., temperature, precipitation and growing season length (GSL) were examined to explore the potential relationships of NDVI to climate warming. PVC was successfully modeled using high resolution data in the ARW. PVC and plant communities appear to reside along a moisture and altitudinal gradient. The NDVI time series demonstrated an overall significant increase in greening at the CBAWO (High Arctic site), specifically in the dry and mesic vegetation type. However, similar overall greening was not observed for the ARW (Low Arctic site). The overall increase in NDVI at the CBAWO was attributed to a significant increase in July temperatures, precipitation and GSL.
Resumo:
The anisotropy of magnetic susceptibility (AMS) has been measured with low- and high-field methods, in deformed carbonate rocks along the Morcles nappe shear zone (Helvetic Alps). High-field measurements at room temperature and 77 K enable the separation of the ferrimagnetic, paramagnetic and diamagnetic anisotropy. The ferrimagnetic sub-fabric is generally insignificant in these rocks, contributing less than 10% to the total AMS. AMS results for both the separated diamagnetic and paramagnetic subfabrics are consistent with the regional shear movement in the late-stage formation of the Helvetic nappes, as seen in the Morcles nappe, whose inverted limb indicate shear displacement towards the northwest. The diamagnetic anisotropy correlates well quantitatively with the calculated magnetic anisotropy based on the calcite texture. There is a gradational change in the degree of anisotropy related to the strain gradient along the shear zone. A more complex magnetic fabric, resulting from partial overprinting due to displacement along the Simplon–Rhône fault, is evident at one site near the root zone of the nappe. Partial overprinting of the magnetic fabric appears to have taken place in two locations farther up the shear zone as well. This late phase deformation is associated with recent exhumation of the Mont Blanc and Belledonne external massifs and orogen parallel extension, and is reflected by the AMS. Rocks with bulk susceptibility ∼0 SI, and simple mineral compositions are ideal for low temperature high-field torque, as this method helps to enhance the paramagnetic susceptibility and anisotropy, which may otherwise be masked by the mixed magnetic contributions of the composite magnetic fabric.
Resumo:
Gradient-domain path tracing has recently been introduced as an efficient realistic image synthesis algorithm. This paper introduces a bidirectional gradient-domain sampler that outperforms traditional bidirectional path tracing often by a factor of two to five in terms of squared error at equal render time. It also improves over unidirectional gradient-domain path tracing in challenging visibility conditions, similarly as conventional bidirectional path tracing improves over its unidirectional counterpart. Our algorithm leverages a novel multiple importance sampling technique and an efficient implementation of a high-quality shift mapping suitable for bidirectional path tracing. We demonstrate the versatility of our approach in several challenging light transport scenarios.