939 resultados para Google, String matching


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We adopt the Dirac model for graphene and calculate the Casimir interaction energy between a plane suspended graphene sample and a parallel plane perfect conductor. This is done in two ways. First, we use the quantum-field-theory approach and evaluate the leading-order diagram in a theory with 2+1-dimensional fermions interacting with 3+1-dimensional photons. Next, we consider an effective theory for the electromagnetic field with matching conditions induced by quantum quasiparticles in graphene. The first approach turns out to be the leading order in the coupling constant of the second one. The Casimir interaction for this system appears to be rather weak. It exhibits a strong dependence on the mass of the quasiparticles in graphene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dictated by the string theory and various higher dimensional scenarios, black holes in D > 4-dimensional space-times must have higher curvature corrections. The first and dominant term is quadratic in curvature, and called the Gauss-Bonnet (GB) term. We shall show that although the Gauss-Bonnet correction changes black hole's geometry only softly, the emission of gravitons is suppressed by many orders even at quite small values of the GB coupling. The huge suppression of the graviton emission is due to the multiplication of the two effects: the quick cooling of the black hole when one turns on the GB coupling and the exponential decreasing of the gray-body factor of the tensor type of gravitons at small and moderate energies. At higher D the tensor gravitons emission is dominant, so that the overall lifetime of black holes with Gauss-Bonnet corrections is many orders larger than was expected. This effect should be relevant for the future experiments at the Large Hadron Collider (LHC).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study evolution of gravitational perturbations of black strings. It is well known that for all wave numbers less than some threshold value, the black string is unstable against the scalar type of gravitational perturbations, which is named the Gregory-Laflamme instability. Using numerical methods, we find the quasinormal modes and time-domain profiles of the black string perturbations in the stable sector and also show the appearance of the Gregory-Laflamme instability in the time domain. The dependence of the black string quasinormal spectrum and late-time tails on such parameters as the wave vector and the number of extra dimensions is discussed. There is numerical evidence that at the threshold point of instability, the static solution of the wave equation is dominant. For wave numbers slightly larger than the threshold value, in the region of stability, we see tiny oscillations with very small damping rate. While, for wave numbers slightly smaller than the threshold value, in the region of the Gregory-Laflamme instability, we observe tiny oscillations with very small growth rate. We also find the level crossing of imaginary part of quasinormal modes between the fundamental mode and the first overtone mode, which accounts for the peculiar time domain profiles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use the recent results on dark matter searches of the 22-string IceCube detector to probe the remaining allowed window for strongly interacting dark matter in the mass range 10(4) < m(X) < 10(15) GeV. We calculate the expected signal in the 22-string IceCube detector from the annihilation of such particles captured in the Sun and compare it to the detected background. As a result, the remaining allowed region in the mass versus cross section parameter space is ruled out. We also show the expected sensitivity of the complete IceCube detector with 86 strings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The inference of gene regulatory networks (GRNs) from large-scale expression profiles is one of the most challenging problems of Systems Biology nowadays. Many techniques and models have been proposed for this task. However, it is not generally possible to recover the original topology with great accuracy, mainly due to the short time series data in face of the high complexity of the networks and the intrinsic noise of the expression measurements. In order to improve the accuracy of GRNs inference methods based on entropy (mutual information), a new criterion function is here proposed. Results: In this paper we introduce the use of generalized entropy proposed by Tsallis, for the inference of GRNs from time series expression profiles. The inference process is based on a feature selection approach and the conditional entropy is applied as criterion function. In order to assess the proposed methodology, the algorithm is applied to recover the network topology from temporal expressions generated by an artificial gene network (AGN) model as well as from the DREAM challenge. The adopted AGN is based on theoretical models of complex networks and its gene transference function is obtained from random drawing on the set of possible Boolean functions, thus creating its dynamics. On the other hand, DREAM time series data presents variation of network size and its topologies are based on real networks. The dynamics are generated by continuous differential equations with noise and perturbation. By adopting both data sources, it is possible to estimate the average quality of the inference with respect to different network topologies, transfer functions and network sizes. Conclusions: A remarkable improvement of accuracy was observed in the experimental results by reducing the number of false connections in the inferred topology by the non-Shannon entropy. The obtained best free parameter of the Tsallis entropy was on average in the range 2.5 <= q <= 3.5 (hence, subextensive entropy), which opens new perspectives for GRNs inference methods based on information theory and for investigation of the nonextensivity of such networks. The inference algorithm and criterion function proposed here were implemented and included in the DimReduction software, which is freely available at http://sourceforge.net/projects/dimreduction and http://code.google.com/p/dimreduction/.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An (n, d)-expander is a graph G = (V, E) such that for every X subset of V with vertical bar X vertical bar <= 2n - 2 we have vertical bar Gamma(G)(X) vertical bar >= (d + 1) vertical bar X vertical bar. A tree T is small if it has at most n vertices and has maximum degree at most d. Friedman and Pippenger (1987) proved that any ( n; d)- expander contains every small tree. However, their elegant proof does not seem to yield an efficient algorithm for obtaining the tree. In this paper, we give an alternative result that does admit a polynomial time algorithm for finding the immersion of any small tree in subgraphs G of (N, D, lambda)-graphs Lambda, as long as G contains a positive fraction of the edges of Lambda and lambda/D is small enough. In several applications of the Friedman-Pippenger theorem, including the ones in the original paper of those authors, the (n, d)-expander G is a subgraph of an (N, D, lambda)-graph as above. Therefore, our result suffices to provide efficient algorithms for such previously non-constructive applications. As an example, we discuss a recent result of Alon, Krivelevich, and Sudakov (2007) concerning embedding nearly spanning bounded degree trees, the proof of which makes use of the Friedman-Pippenger theorem. We shall also show a construction inspired on Wigderson-Zuckerman expander graphs for which any sufficiently dense subgraph contains all trees of sizes and maximum degrees achieving essentially optimal parameters. Our algorithmic approach is based on a reduction of the tree embedding problem to a certain on-line matching problem for bipartite graphs, solved by Aggarwal et al. (1996).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We prove that for any a-mixing stationary process the hitting time of any n-string A(n) converges, when suitably normalized, to an exponential law. We identify the normalization constant lambda(A(n)). A similar statement holds also for the return time. To establish this result we prove two other results of independent interest. First, we show a relation between the rescaled hitting time and the rescaled return time, generalizing a theorem of Haydn, Lacroix and Vaienti. Second, we show that for positive entropy systems, the probability of observing any n-string in n consecutive observations goes to zero as n goes to infinity. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we determine the lower central and derived series for the braid groups of the sphere. We are motivated in part by the study of Fadell-Neuwirth short exact sequences, but the problem is important in its own right. The braid groups of the 2-sphere S(2) were studied by Fadell, Van Buskirk and Gillette during the 1960s, and are of particular interest due to the fact that they have torsion elements (which were characterised by Murasugi). We first prove that for all n epsilon N, the lower central series of the n-string braid group B(n)(S(2)) is constant from the commutator subgroup onwards. We obtain a presentation of Gamma(2)(Bn(S(2))), from which we observe that Gamma(2)(B(4)(S(2))) is a semi-direct product of the quaternion group Q(8) of order 8 by a free group F(2) of rank 2. As for the derived series of Bn(S(2)), we show that for all n >= 5, it is constant from the derived subgroup onwards. The group Bn(S(2)) being finite and soluble for n <= 3, the critical case is n = 4 for which the derived subgroup is the above semi-direct product Q(8) (sic) F(2). By proving a general result concerning the structure of the derived subgroup of a semi-direct product, we are able to determine completely the derived series of B(4)(S(2)) which from (B(4)(S(2)))(4) onwards coincides with that of the free group of rank 2, as well as its successive derived series quotients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adults of Pseudopolydora rosebelae sp. nov. inhabit silty tubes on muddy bottoms in shallow water in southern Brazil, states of Sao Paulo and Rio de Janeiro. They are rare and extremely delicate, attaining 20 mm long for 55 chaetigers. The worms are distinctive by their colourful yellow and black pigmentation on the anterior part of body and palps, prominent transverse hood on the dorsal anterior edge of chaetiger 3, and lack of coloured respiratory pigment in blood. Of 12 examined individuals, all were females. Oogenesis is intraovarian; oocytes develop from chaetigers 14-15 to chaetigers 24-36. Recently laid oocytes were about 150 mu m in diameter, with embryos and developing larvae found in capsules inside female tubes in March-June. Broods comprised up to 23 capsules with 400 propagules. Capsules were joined to each other in a string and each attached by a single thin stalk to the inner wall of the tube. Larvae hatched at the 4-chaetiger stage and fed on plankton. Pelagic larvae are unique among Pseudopolydora in having large ramified mid-dorsal melanophores from chaetiger 3 onwards. Competent larvae are able to settle and metamorphose at the 15-chaetiger stage, but can remain planktonic up to 18 chaetigers. They have one pair of unpigmented ocelli and three pairs of black eyes in the prostomium, unpaired ramified mid-dorsal melanophores on chaetiger 1 and on the pygidium, ramified lateral melanophores on chaetigers 5-10, prominent yellow chromatophores in the prostomium, peristomium, on dorsal and ventral sides of chaetigers and in the pygidium. Branchiae are present on chaetigers 7-10, and gastrotrochs are arranged on chaetigers 3, 5, 7 and 12. Provisional serrated bristles are present in all notopodia, and hooks are present in neuropodia from chaetiger 8 onwards. Two pairs of provisional protonephridia are present in chaetigers 1 and 2, and adult metanephridia are present from chaetiger 4.