957 resultados para Goma 7-Step Pathway


Relevância:

20.00% 20.00%

Publicador:

Resumo:

WO3 nanoplate arrays with (002) oriented facets grown on fluorine doped SnO2 (FTO) glass substrates are tailored by tuning the precursor solution via a facile hydrothermal method. A 2-step hydrothermal method leads to the preferential growth of WO3 film with enriched (002) facets, which exhibits extraordinary photoelectrochemical (PEC) performance with a remarkable photocurrent density of 3.7 mA cm–2 at 1.23 V vs. revisable hydrogen electrode (RHE) under AM 1.5 G illumination without the use of any cocatalyst, corresponding to ~93% of the theoretical photocurrent of WO3. Density functional theory (DFT) calculations together with experimental studies reveal that the enhanced photocatalytic activity and better photo-stability of the WO3 films are attributed to the synergistic effect of highly reactive (002) facet and nanoplate structure which facilitates the photo–induced charge carrier separation and suppresses the formation of peroxo-species. Without the use of oxygen evolution cocatalysts, the excellent PEC performance, demonstrated in this work, by simply tuning crystal facets and nanostructure of pristine WO3 films may open up new opportunities in designing high performance photoanodes for PEC water splitting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The irreversible ErbB family blocker afatinib and the reversible EGFR tyrosine kinase inhibitor gefitinib are approved for first-line treatment of EGFR mutation-positive non-small-cell lung cancer (NSCLC). We aimed to compare the efficacy and safety of afatinib and gefitinib in this setting. Methods This multicentre, international, open-label, exploratory, randomised controlled phase 2B trial (LUX-Lung 7) was done at 64 centres in 13 countries. Treatment-naive patients with stage IIIB or IV NSCLC and a common EGFR mutation (exon 19 deletion or Leu858Arg) were randomly assigned (1:1) to receive afatinib (40 mg per day) or gefitinib (250 mg per day) until disease progression, or beyond if deemed beneficial by the investigator. Randomisation, stratified by EGFR mutation type and status of brain metastases, was done centrally using a validated number generating system implemented via an interactive voice or web-based response system with a block size of four. Clinicians and patients were not masked to treatment allocation; independent review of tumour response was done in a blinded manner. Coprimary endpoints were progression-free survival by independent central review, time-to-treatment failure, and overall survival. Efficacy analyses were done in the intention-to-treat population and safety analyses were done in patients who received at least one dose of study drug. This ongoing study is registered with ClinicalTrials.gov, number NCT01466660. Findings Between Dec 13, 2011, and Aug 8, 2013, 319 patients were randomly assigned (160 to afatinib and 159 to gefitinib). Median follow-up was 27·3 months (IQR 15·3–33·9). Progression-free survival (median 11·0 months [95% CI 10·6–12·9] with afatinib vs 10·9 months [9·1–11·5] with gefitinib; hazard ratio [HR] 0·73 [95% CI 0·57–0·95], p=0·017) and time-to-treatment failure (median 13·7 months [95% CI 11·9–15·0] with afatinib vs 11·5 months [10·1–13·1] with gefitinib; HR 0·73 [95% CI 0·58–0·92], p=0·0073) were significantly longer with afatinib than with gefitinib. Overall survival data are not mature. The most common treatment-related grade 3 or 4 adverse events were diarrhoea (20 [13%] of 160 patients given afatinib vs two [1%] of 159 given gefitinib) and rash or acne (15 [9%] patients given afatinib vs five [3%] of those given gefitinib) and liver enzyme elevations (no patients given afatinib vs 14 [9%] of those given gefitinib). Serious treatment-related adverse events occurred in 17 (11%) patients in the afatinib group and seven (4%) in the gefitinib group. Ten (6%) patients in each group discontinued treatment due to drug-related adverse events. 15 (9%) fatal adverse events occurred in the afatinib group and ten (6%) in the gefitinib group. All but one of these deaths were considered unrelated to treatment; one patient in the gefitinib group died from drug-related hepatic and renal failure. Interpretation Afatinib significantly improved outcomes in treatment-naive patients with EGFR-mutated NSCLC compared with gefitinib, with a manageable tolerability profile. These data are potentially important for clinical decision making in this patient population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel stress induced martenistic phase transformation is reported in an initial B2-CuZr nanowire of cross-sectional dimensions in the range of 19.44 x 19.44-38.88 x 38.88 angstrom(2) and temperature in the range of 10-400 K under both tensile and compressive loading. Extensive Molecular Dynamic simulations are performed using an inter-atomic potential of type Finnis and Sinclair. The nanowire shows a phase transformation from an initial B2 phase to BCT (body-centered-tetragonal) phase with failure strain of similar to 40% in tension, whereas in compression, comparatively a small B2 -> BCT phase transformation is observed with failure strain of similar to 25%. Size and temperature dependent deformation mechanisms which control ultimately the B2 -> BCT phase transformation are found to be completely different for tensile and compressive loadings. Under tensile loading, small cross-sectional nanowire shows a single step phase transformation, i.e. B2 -> BCT via twinning along {100} plane, whereas nanowires with larger cross-sectional area show a two step phase transformation, i.e. B2 -> R phase -> BCT along with intermediate hardening. In the first step, nanowire shows phase transformation from B2 -> R phase via twinning along {100} plane, afterwards the nanowire deforms via twinning along {110} plane which cause further transformation from R phase -> BCT phase. Under compressive loading, the nanowire shows crushing along {100} plane after a single step phase transformation from B2 -> BCT. Proper tailoring of such size and temperature dependent phase transformation can be useful in designing nanowire for high strength applications with corrosion and fatigue resistance. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new dinuclear nickel(II) complex, [Ni-2(LH2)(H2O)(2)(OH)(NO3)](NO3)(3) (1), of an ``end-off'' compartmental ligand 2,6-bis(N-ethylpiperazine-iminomethyl)-4-methyl-phenolato, has been synthesized and structurally characterized. The X-ray single crystal structure analysis shows that the piperazine moieties assume the expected chair conformation and are protonated. The complex 1 exhibits versatile catalytic activities of biological significance, viz. catecholase, phosphatase, and DNA cleavage activities, etc. The catecholase activity of the complex observed is very dependent on the nature of the solvent. In acetonitrile medium, the complex is inactive to exhibit catecholase activity. On the other hand, in methanol, it catalyzes not only the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) but also tetrachlorocatechol (TCC), a catechol which is very difficult to oxidize, under aerobic conditions. UV vis spectroscopic investigation shows that TCC oxidation proceeds through the formation of an intermediate. The intermediate has been characterized by an electron spray ionizaton-mass spectrometry study, which suggests a bidentate rather than a monodentate mode of TCC coordination in that intermediate, and this proposition have been verified by density functional theory calculation. The complex also exhibits phosphatase (with substrate p-nitrophenylphosphate) and DNA cleavage activities. The DNA cleavage activity exhibited by complex 1 most probably proceeds through a hydroxyl radical pathway. The bioactivity study suggests the possible applications of complex 1 as a site specific recognition of DNA and/or as an anticancer agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mannose-binding lectin (RVL) was purified from the tubers of Remusatia vivipara, a monocot plant by single-step affinity chromatography on asialofetuin-Sepharose 4B. RVL agglutinated only rabbit erythrocytes and was inhibited by mucin, asialomucin, asialofetuin and thyroglobulin. Lectin activity was stable up to 80A degrees C and under wide range of pH (2.0-9.3). SDS-PAGE and gel filtration results showed the lectin is a homotetramer of Mr 49.5 kDa, but MALDI analysis showed two distinct peaks corresponding to subunit mass of 12 kDa and 12.7 kDa. Also the N-terminal sequencing gave two different sequences indicating presence of two polypeptide chains. Cloning of RVL gene indicated posttranslational cleavage of RVL precursor into two mature polypeptides of 116 and 117 amino-acid residues. Dynamic light scattering (DLS) and gel filtration studies together confirmed the homogeneity of the purified lectin and supported RVL as a dimer with Mr 49.5 kDa derived from single polypeptide precursor of 233 amino acids. Purified RVL exerts potent nematicidal activity on Meloidogyne incognita, a root knot nematode. Fluorescent confocal microscopic studies demonstrated the binding of RVL to specific regions of the alimentary-tract and exhibited a potent toxic effect on M. incognita. RVL-mucin complex failed to interact with the gut confirming the receptor mediated lectin interaction. Very high mortality (88%) rate was observed at lectin concentration as low as 30 A mu g/ml, suggesting its potential application in the development of nematode resistant transgenic-crops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the title compound, C16H13ClN2O, the quinoline ring system is essentially planar, with a maximum deviation of 0.021 (2) angstrom. The pyridone ring is oriented at a dihedral angle of 85.93 (6)degrees with respect to the quinoline ring system. In the crystal structure, intermolecular C-H center dot center dot center dot O hydrogen bonds link the molecules along the b axis. Weak pi-pi stacking interactions [centroid-centroid distances = 3.7218 (9) and 3.6083 (9) angstrom] are also observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the title compound, C30H24Cl2N2O3, the two quinoline ring systems are almost planar [maximum deviations = 0.029 (2) and 0.018 (3) angstrom] and the dihedral angle between them is 4.17 (8)degrees. The dihedral angle between the phenyl ring and its attached quinoline ring is 69.06 (13)degrees. The packing is stabilized by C-H center dot center dot center dot O, C-H center dot center dot center dot N, weak pi-pi stacking [centroid-centroid distances = 3.7985 (16) and 3.7662(17) angstrom] and C-H center dot center dot center dot pi interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the title compound, C17H15ClN2O, the quinoline ring system is nearly planar, with a maximum deviation from the mean plane of 0.074 (2) angstrom, and makes a dihedral angle of 81.03 (7)degrees with the pyridone ring. The crystal packing is stabilized by pi-pi stacking interactions between the pyridone and benzene rings of the quinoline ring system [centroid-centroid distance = 3.6754 (10) angstrom]. Furthermore, weak intermolecular C-H center dot center dot center dot O hydrogen bonding links molecules into supramolecular chains along [001].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new dinuclear nickel(II) complex, [Ni-2(LH2)(H2O)(2)(OH)(NO3)](NO3)(3) (1), of an "end-off" compartmental ligand 2,6-bis(N-ethylpiperazine-iminomethyl)-4-methyl-phenolato, has been synthesized and structurally characterized. The X-ray single crystal structure analysis shows that the piperazine moieties assume the expected chair conformation and are protonated. The complex 1 exhibits versatile catalytic activities of biological significance, viz. catecholase, phosphatase, and DNA cleavage activities, etc. The catecholase activity of the complex observed is very dependent on the nature of the solvent. In acetonitrile medium, the complex is inactive to exhibit catecholase activity. On the other hand, in methanol, it catalyzes not only the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) but also tetrachlorocatechol (TCC), a catechol which is very difficult to oxidize, under aerobic conditions. UV vis spectroscopic investigation shows that TCC oxidation proceeds through the formation of an intermediate. The intermediate has been characterized by an electron spray ionizaton-mass spectrometry study, which suggests a bidentate rather than a monodentate mode of TCC coordination in that intermediate, and this proposition have been verified by density functional theory calculation. The complex also exhibits phosphatase (with substrate p-nitrophenylphosphate) and DNA cleavage activities. The DNA cleavage activity exhibited by complex 1 most probably proceeds through a hydroxyl radical pathway. The bioactivity study suggests the possible applications of complex 1 as a site specific recognition of DNA and/or as an anticancer agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of the peptide Boc-Ala-Leu-Ac(7)c-Ala-Leu-Ac(7)c-OMe (Ac(7)c,1-aminocycloheptane-1-carboxylic acid) is described in crystals. The presence of two Ac(7)c residues was expected to stabilize a 3(10)-helical fold. Contrary to expectation the structural analysis revealed an unfolded amino terminus, with Ala(1) adopting an extended beta-conformation (phi = -93degrees,psi = 112degrees). Residues 2-5 form a 3(10)-helix, stabilized by three successive intramolecular hydrogen bonds. Notably, two NH groups Ala(1) and Ac(7)c(3) do not form any hydrogen bonds in the crystal. Peptide assembly appears to be dominated by packing of the cycloheptane rings that stack against one another within the molecule and also throughout the crystal in columns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the backbone chemical shift assignments of the acyl-acyl carrier protein (ACP) intermediates of the fatty acid biosynthesis pathway of Plasmodium falciparum. The acyl-ACP intermediates butyryl (C4), -octanoyl (C8), -decanoyl (C10), -dodecanoyl (C12) and -tetradecanoyl (C14)-ACPs display marked changes in backbone HN, Cα and Cβ chemical shifts as a result of acyl chain insertion into the hydrophobic core. Chemical shift changes cast light on the mechanism of expansion of the acyl carrier protein core.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acyl carrier protein (ACP) plays a central role in fatty acid biosynthesis. However, the molecular machinery that mediates its function is not yet fully understood. Therefore, structural studies were carried out on the acyl-ACP intermediates of Plasmodium falciparum using NMR as a spectroscopic probe. Chemical shift perturbation studies put forth a new picture of the interaction of ACP molecule with the acyl chain, namely, the hydrophobic core can protect up to 12 carbon units, and additional carbons protrude out from the top of the hydrophobic cavity. The latter hypothesis stems from chemical shift changes observed in C-alpha and C-beta of Ser-37 in tetradecanoyl-ACP. C-13, N-15-Double-filtered nuclear Overhauser effect (NOE) spectroscopy experiments further substantiate the concept; in octanoyl (C-8)- and dodecanoyl (C-12)-ACP, a long range NOE is observed within the phosphopantetheine arm, suggesting an arch-like conformation. This NOE is nearly invisible in tetradecanoyl (C-14)-ACP, indicating a change in conformation of the prosthetic group. Furthermore, the present study provides insights into the molecular mechanism of ACP expansion, as revealed from a unique side chain-to-backbone hydrogen bond between two fairly conserved residues, Ile-55 HN and Glu-48 O. The backbone amide of Ile-55 HN reports a pK(a) value for the carboxylate, similar to 1.9 pH units higher than model compound value, suggesting strong electrostatic repulsion between helix II and helix III. Charge-charge repulsion between the helices in combination with thrust from inside due to acyl chain would energetically favor the separation of the two helices. Helix III has fewer structural restraints and, hence, undergoes major conformational change without altering the overall-fold of P. falciparum ACP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uracil DNA glycosylase (Ung)initiates the uracil excision repair pathway. We have earlier characterized the Y66W and Y66H mutants of Ung and shown that they are compromised by similar to 7- and similar to 170-fold, respectively in their uracil excision activities. In this study, fluorescence anisotropy measurements show that compared with the wild-type, the Y66W protein is moderately compromised and attenuated in binding to AP-DNA. Allelic exchange of ung in Escherichia coli with ung::kan, ungY66H:amp or ungY66W:amp alleles showed similar to 5-, similar to 3.0- and similar to 2.0-fold, respectively increase in mutation frequencies. Analysis of mutations in the rifampicin resistance determining region of rpoB revealed that the Y66W allele resulted in an increase in A to G (or T to C) mutations. However, the increase in A to G mutations was mitigated upon expression of wild-type Ung from a plasmid borne gene. Biochemical and computational analyses showed that the Y66W mutant maintains strict specificity for uracil excision from DNA. Interestingly, a strain deficient in AP-endonucleases also showed an increase in A to G mutations. We discuss these findings in the context of a proposal that the residency of DNA glycosylase(s) onto the AP-sites they generate shields them until recruitment of AP-endonucleases for further repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emergence of strains of Plasmodium falciparum resistant to the commonly used antimalarials warrants the development of new antimalarial agents. The discovery of type II fatty acid synthase (FAS) in Plasmodium distinct from the FAS in its human host (type I FAS) opened up new avenues for the development of novel antimalarials. The process of fatty acid synthesis takes place by iterative elongation of butyryl-acyl carrier protein (butyryl-ACP) by two carbon units, with the successive action of four enzymes constituting the elongation module of FAS until the desired acyl length is obtained. The study of the fatty acid synthesis machinery of the parasite inside the red blood cell culture has always been a challenging task. Here, we report the in vitro reconstitution of the elongation module of the FAS of malaria parasite involving all four enzymes, FabB/F (β-ketoacyl-ACP synthase), FabG (β-ketoacyl-ACP reductase), FabZ (β-ketoacyl-ACP dehydratase), and FabI (enoyl-ACP reductase), and its analysis by matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS). That this in vitro systems approach completely mimics the in vivo machinery is confirmed by the distribution of acyl products. Using known inhibitors of the enzymes of the elongation module, cerulenin, triclosan, NAS-21/91, and (–)-catechin gallate, we demonstrate that accumulation of intermediates resulting from the inhibition of any of the enzymes can be unambiguously followed by MALDI-TOF MS. Thus, this work not only offers a powerful tool for easier and faster throughput screening of inhibitors but also allows for the study of the biochemical properties of the FAS pathway of the malaria parasite.