952 resultados para Godfrey, of Bouillon, ca. 1060-1100.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE The aim of the study was to elucidate the cellular mechanism underlying the suppression of glucose-induced insulin secretion in mice fed a high-fat diet (HFD) for 15 weeks. RESEARCH DESIGN AND METHODS-C57BL6J mice were fed a HFD or a normal diet (ND) for 3 or 15 weeks. Plasma insulin and glucose levels in vivo were assessed by intraperitoneal glucose tolerance test. Insulin secretion in vitro was studied using static incubations and a perfused pancreas preparation. Membrane currents, electrical activity, and exocytosis were examined by patch-clamp technique measurements. Intracellular calcium concentration ([Ca(2+)](i)) was measured by microfluorimetry. Total internal reflection fluorescence microscope (TIRFM) was used for optical imaging of exocytosis and submembrane depolarization-evoked [Ca(2+)](i). The functional data were complemented by analyses of histology and gene transcription. RESULTS After 15 weeks, but not 3 weeks, mice on HFD exhibited hyperglycemia and hypoinsulinemia. Pancreatic islet content and beta-cell area increased 2- and 1.5-fold, respectively. These changes correlated with a 20-50% reduction of glucose-induced insulin secretion (normalized to insulin content). The latter effect was not associated with impaired electrical activity or [Ca(2+)](i) signaling. Single-cell capacitance and TIRFM measurements of exocytosis revealed a selective suppression (>70%) of exocytosis elicited by short (50 ms) depolarization, whereas the responses to longer depolarizations were (500 ms) less affected. The loss of rapid exocytosis correlated with dispersion of Ca(2+) entry in HFD beta-cells. No changes in gene transcription of key exocytotic protein were observed. CONCLUSIONS HFD results in reduced insulin secretion by causing the functional dissociation of voltage-gated Ca(2+) entry from exocytosis. These observations suggest a novel explanation to the well-established link between obesity and diabetes. Diabetes 59:1192-1201, 2010

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have performed a systematic study of the time and temperature dependencies of the electrical resistivity (rho(T, t)) inNd(0.5)Ca(0.5)Mn(1-x)Cr(x)O(3) single crystals with x = 0.02 and 0.07 in order to examine the dynamics of the phase separation. The relaxation effects can be described by the combination of a rapid exponential increase/decrease with a slower logarithmic contribution at longer times. The experimental results suggest the existence of a large temperature window in which huge relaxation effects occur, and the relative fraction of the coexisting phases rapidly changes as a function of time, depending on the initial magnetic state of the sample. The rho(T, t) relaxation measurements were shown to be a suitable tool for probing the dynamical nature of the phase separation, in which magnetically distinct phases compete against each other in a wide temperature range. In addition, the features observed in the rho(T, t) curves were found to be in excellent agreement with both the magnetic properties and the structural transitions observed in these manganites.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The physical properties of the La(0.6)Y(0.1)Ca(0.3)MnO(3) compound have been investigated, focusing on the magnetoresistance phenomenon studied by both dc and ac electrical transport measurements. X-ray diffraction and scanning electron microscopy analysis of ceramic samples prepared by the sol-gel method revealed that specimens are single phase and have average grain size of similar to 0.5 mu m. Magnetization and 4-probe dc electrical resistivity rho(T,H) experiments showed that a ferromagnetic transition at T(C) similar to 170 K is closely related to a metal-insulator (MI) transition occurring at essentially the same temperature T(MI). The magnetoresistance effect was found to be more pronounced at low applied fields (H <= 2.5 T) and temperatures close to the MI transition. The ac electrical transport was investigated by impedance spectroscopy Z(f,T,H) under applied magnetic field H up to 1 T. The Z(f,T,H) data exhibited two well-defined relaxation processes that exhibit different behaviors depending on the temperature and applied magnetic field. Pronounced effects were observed close to T (C) and were associated with the coexistence of clusters with different electronic and magnetic properties. In addition, the appreciable decrease of the electrical permittivity epsilon`(T,H) is consistent with changes in the concentration of e(g) mobile holes, a feature much more pronounced close to T (C).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have studied the normal and superconducting transport properties of Bi(1.65)Pb(0.35)Sr(2)Ca(2)Cu(3)O(10+delta) (Bi-2223) ceramic samples. Four samples, from the same batch, were prepared by the solid-state reaction method and pressed uniaxially at different compacting pressures, ranging from 90 to 250 MPa before the last heat treatment. From the temperature dependence of the electrical resistivity, combined with current conduction models for cuprates, we were able to separate contributions arising from both the grain misalignment and microstructural defects. The behavior of the critical current density as a function of temperature at zero applied magnetic field, J (c) (T), was fitted to the relationship J (c) (T)ae(1-T/T (c) ) (n) , with na parts per thousand 2 in all samples. We have also investigated the behavior of the product J (c) rho (sr) , where rho (sr) is the specific resistance of the grain-boundary. The results were interpreted by considering the relation between these parameters and the grain-boundary angle, theta, with increasing the uniaxial compacting pressure. We have found that the above type of mechanical deformation improves the alignment of the grains. Consequently the samples exhibit an enhance in the intergranular properties, resulting in a decrease of the specific resistance of the grain-boundary and an increase in the critical current density.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electronic and optical properties of grossular garnet are investigated using density functional theory (DFT) within generalized gradient approximation (GGA). The calculated lattice parameters are in good agreement with the experiment data. The electronic structure shows that grossular has a direct band gap of 5.22 eV. The dielectric functions, reflective index, extinction coefficient, reflectivity and energy-loss spectrum are calculated. The optical properties of grossular are discussed based on the band structure calculations. The O 2p states and Si 3s play a major role in these optical transitions as initial and final states, respectively. The absorption spectrum is localized in the ultraviolet range between 30 and 250 nm. Finally, we concluded that pure grossular crystal does not absorb radiation in the visible range. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Perovskite-structured Ba(0.90)Ca(0.10)(Ti(1-x)Zr(x))O(3) ceramics were prepared in this work and subsequently studied in terms of composition-dependent dielectric and high-resolution long-range order structural properties from 30 to 450 K. The dielectric response of these materials was measured at several frequencies in the range from 1 kHz to 1 MHz. Combining both techniques, including Rietveld refinement of the X-ray diffraction data, allowed observing that, when increasing Zr(4+) content, the materials change from conventional to diffuse and relaxor ferroelectric compounds, the transition occurring spontaneously at the x = 0.18 composition. Interestingly, this spontaneous transition turned out to be prevented for a further increase of Zr(4+). On the basis of all the dielectric and structural results processed, a phase diagram of this system is presented. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ca isotopic compositions of Marinoan post-glacial carbonate successions in Brazil and NW Canada were measured Both basal dolostones display delta(44/40)Ca values between 1 and 0 7 parts per thousand overlying limestones show a negative Ca isotope excursion to values around 0 1 parts per thousand and delta(44/40)Ca values rapidly increase up-section to near 2 0 parts per thousand In the Brazilian successions those high delta(44/40)Ca values rapidly decrease and stabilize to values between 0 6 and 0 9 parts per thousand These Ca isotope secular variation trends are unlike those of Sturtian post-glacial carbonate successions but similar to those of Marinoan post-glacial carbonate successions in Namibia suggesting that the perturbation of the marine Ca cycle was global This recommends Ca isotope stratigraphy as a tool to correlate Neoproterozoic post-glacial carbonate successions worldwide While the lowermost and uppermost strata have delta(44/40)Ca values typical of Phanerozoic carbonates the extremes 0 1 and 2 0 parts per thousand have not been thus far reported for other marine carbonates These extreme values suggest a short-lived non-actualistic perturbation in the marine Ca cycle Simple box modelling of the Marinoan post-glacial marine Ca cycle can reproduce the extreme values only by postulating a two-step process with Ca input initially exceeding Ca removal trough carbonate precipitation followed by precipitation overtaking a decreased Ca Input (C) 2010 Elsevier B V All rights reserved

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Architectures based on Coordinated Atomic action (CA action) concepts have been used to build concurrent fault-tolerant systems. This conceptual model combines concurrent exception handling with action nesting to provide a general mechanism for both enclosing interactions among system components and coordinating forward error recovery measures. This article presents an architectural model to guide the formal specification of concurrent fault-tolerant systems. This architecture provides built-in Communicating Sequential Processes (CSPs) and predefined channels to coordinate exception handling of the user-defined components. Hence some safety properties concerning action scoping and concurrent exception handling can be proved by using the FDR (Failure Divergence Refinement) verification tool. As a result, a formal and general architecture supporting software fault tolerance is ready to be used and proved as users define components with normal and exceptional behaviors. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A mild new procedure for preparing protected peptide thioesters, based oil Ca(2+)-assisted thiolysis of peptide-Kaiser oxime resin (KOR) linkage, is described. Ac-Ile-Ser(Bzl)-Asp(OcHx)-SR (Ac: acetyl; Bzl: benzyl; cHx: cyclohexyl), model peptide, was readily released from the resin by incubating the peptide-KOR at 60 degrees C in mixtures of DMF with n-butanethiol [R = (CH(2))(3)CH(3)] or ethyl 3-mercaptopropionate [R = (CH(2))(2)COOCHCH(3)] containing Ca(CH(3)COO)(2). After serine and aspartic acid side-chain deprotection under acid conditions, Ac-Ile-Ser-Asp-S(CH(2))(2)COOCH(2)CH(3) was successfully obtained with good quality and high yield. This type of C-terminal modified peptide may act as an excellent acyl donor in peptide segment condensation by the thioester method, native chemical ligation and enzymatic methods. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The performance of La(2-x)M(x)CuO(4) perovskites (where M = Ce, Ca or Sr) as catalysts for the water-gas shift reaction was investigated at 290 degrees C and 360 degrees C. The catalysts were characterized by EDS, XRD, N(2) adsorption-desorption, XPS and XANES. The XRD results showed that all the perovskites exhibited a single phase (the presence of perovskite structure), suggesting the incorporation of metals in the perovskite structure. The XPS and XANES results showed the presence of Cu(2+) on the surface. The perovskites that exhibited the best catalytic performance were La(2-x)Ce(x)CuO(4) perovslcites, with CO conversions of 85%-90%. Moreover, these perovskites have higher surface areas and larger amounts of Cu on the surface. And Ce has a higher filled energy level than the other metals, increasing the energy of the valence band of Ce and providing more electrons for the reaction. Besides, the La(1.80)Ca(0.20)CuO(4) perovskite showed a good catalytic performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper investigated the microstructural characterization and mechanical properties of Mg-Zr-Ca alloys prepared by hot-extrusion for potential use in biomedical applications. Mg-Zr-Ca alloys were fabricated by commercial pure Mg (99.9%), Ca (99.9%), and master Mg-33% Zr alloy (mass%). The microstructural characterization of the hot-extruded Mg-Zr-Ca alloys was examined by X-ray diffraction analysis and optical microscopy, and the mechanical properties were determined from tensile tests. The experimental results indicate that the hot-extruded Mg-Zr-Ca alloys with 1 mass% Ca are composed of one single phase and those alloys with 2 mass% Ca consist of both Mg2Ca and α phase. The hot-extruded Mg-Zr-Ca alloys exhibit equiaxed granular microstructures and the hot-extrusion process can effectively increase both the tensile strength and ductility of Mg-Zr-Ca alloys. The hot-extruded Mg-1Zr-1Ca alloy (mass%) exhibits the highest strength and best ductility among all the alloys, and has much higher strength than the human bone, suggesting that it has a great potential to be a good candidate for biomedical application.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper investigated the microstructures and compressive properties of hot-rolled Mg-Zr-Ca alloys for biomedical applications. The microstructures of the Mg-Zr-Ca alloys were examined by X-ray diffraction analysis and optical microscopy, and the compressive properties were determined from compressive tests. The experimental results indicate that the hot-rolled Mg-Zr-Ca alloys with 1% Ca are composed of one single α phase and those alloys with 2% Ca consist of both Mg2Ca and α phase. The hot-rolled Mg-Zr-Ca alloys exhibit typical elongated microstructures with obvious fibrous stripe, and have much higher compressive strength and lower compressive modulus than pure Mg. All the studied alloys have much higher compressive yield strength than the human bone (90~140 MPa) and comparable modulus with the human bone, suggesting that they have a great potential to be good candidates for biomedical applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The microstructures, mechanical properties, corrosion behaviour and biocompatibility of the Mg-Zr-Ca alloys have been investigated for potential use in orthopaedic applications. The microstructures of the alloys were examined using X-ray diffraction analysis, optical microscopy and scanning electron microscopy. The mechanical properties of Mg-Zr-Ca alloys were determined from compressive tests. The corrosion behaviour has been investigated using an immersion test and electrochemical measurement. The biocompatibility was evaluated by cell growth factor using osteoblast-like SaOS2 cell. The experimental results indicate that the hot-rolled Mg-Zr-Ca alloys exhibit much finer microstructures than the as-cast Mg-Zr-Ca alloys which show coarse microstructures. The compressive strength of the hot-rolled alloys is much higher than that of the as-cast alloys and the human bone, which would offer appropriate mechanical properties for orthopaedic applications. The corrosion resistance of the alloys can be enhanced significantly by hot-rolling process. Hot-rolled Mg-0.5Zr-1Ca alloy (wt %) exhibits the lowest corrosion rate among all alloys studied in this paper. The hot-rolled Mg-0.5Zr-1Ca and Mg-1Zr-1Ca alloys exhibit better biocompatibility than other studied alloys and possess advanced mechanical properties, corrosion resistance and biocompatibility, suggesting that they have a great potential to be good candidates for orthopaedic applications. © 2012 Springer Science+Business Media New York.