964 resultados para Global solar radiation estimation inside polyethylene greenhouses from the sunshine duration
Resumo:
The impact of late glacial changes on the sedimentary record was investigated in two long vibracores, collected from the shelf edge off Mauritania, northwest Africa. Lithology and radiocarbon dates indicate that the sedimentary sequences were mainly controlled by sea-level changes on the shelf. The upper Pleistocene sequence is characterized by deposition in coastal environments, while the Holocene sequence represents deposition in shelf environments. During low sea level, much sediment was supplied to the present outer shelf, and the data imply an average accumulation rate of up to 43.0 cm/1000 yrs during the late Pleistocene, which is substantially higher than the Holocene rate. Shelf sediments were continuously reworked and redistributed on a regional scale during falling and rising sea level. The presence of reworked material results in radiocarbon ages which are too old. The mollusc. Venus striatula, which presently is found north of, but not along, the Mauritanian coast, occurs in the upper Pleistocene sequence, suggesting cooler water conditions in the shelf during late glacial times. This species probably migrated to the south during late glacial times, following the southward extension of the cold Canary Current. Radiocarbon dates of the shells broadly coincide with a lowstand of sea level over this part of the continental shelf.
Resumo:
The first appearance of skeletal metazoans in the late Ediacaran (~550 million years ago; Ma) has been linked to the widespread development of oxygenated oceanic conditions, but a precise spatial and temporal reconstruction of their evolution has not been resolved. Here we consider the evolution of ocean chemistry from ~550 to ~541 Ma across shelf-to-basin transects in the Zaris and Witputs Sub-Basins of the Nama Group, Namibia. New carbon isotope data capture the final stages of the Shuram/Wonoka deep negative C-isotope excursion, and these are complemented with a reconstruction of water column redox dynamics utilising Fe-S-C systematics and the distribution of skeletal and soft-bodied metazoans. Combined, these inter-basinal datasets provide insight into the potential role of ocean redox chemistry during this pivotal interval of major biological innovation. The strongly negative d13C values in the lower parts of the sections reflect both a secular, global change in the C-isotopic composition of Ediacaran seawater, as well as the influence of 'local' basinal effects as shown by the most negative d13C values occurring in the transition from distal to proximal ramp settings. Critical, though, is that the transition to positive d13C values postdates the appearance of calcified metazoans, indicating that the onset of biomineralization did not occur under post-excursion conditions. Significantly, we find that anoxic and ferruginous deeper water column conditions were prevalent during and after the transition to positive d13C that marks the end of the Shuram/Wonoka excursion. Thus, if the C isotope trend reflects the transition to global-scale oxygenation in the aftermath of the oxidation of a large-scale, isotopically light organic carbon pool, it was not sufficient to fully oxygenate the deep ocean. Both sub-basins reveal highly dynamic redox structures, where shallow, inner ramp settings experienced transient oxygenation. Anoxic conditions were caused either by episodic upwelling of deeper anoxic waters or higher rates of productivity. These settings supported short-lived and monospecific skeletal metazoan communities. By contrast, microbial (thrombolite) reefs, found in deeper inner- and mid-ramp settings, supported more biodiverse communities with complex ecologies and large skeletal metazoans. These long-lived reef communities, as well as Ediacaran soft-bodied biotas, are found particularly within transgressive systems, where oxygenation was persistent. We suggest that a mid-ramp position enabled physical ventilation mechanisms for shallow water column oxygenation to operate during flooding and transgressive sea-level rise. Our data support a prominent role for oxygen, and for stable oxygenated conditions in particular, in controlling both the distribution and ecology of Ediacaran skeletal metazoan communities.
Resumo:
Rock magnetic/paleoclimatic/diagenetic relationships of sediments spanning the last 0.78 Ma have been investigated using samples collected from light and dark layers recovered at ODP Sites 794 (Yamato Basin) and 795 (Japan Basin). Rock-magnetic parameters (K, Kfd, ARM, SIRM, S-ratio) are shown to reflect diagenetic processes and climate-related variations in the concentration, mineralogy and grain-size of the magnetic minerals contained within the sediments. The magnetic mineralogy is dominated by ferrimagnetic (magnetite-type) minerals with a small contribution made by hematite and iron sulphides such as pyrrhotite and/or greigite. Magnetic mineral concentration and grain size vary between light and dark layers with the former characterized by a higher magnetic content and a finer magnetic grain size. Magnetite dissolution, related to sulfate reduction due to bacterial degradation of organic matter, is the process responsible for the magnetic characteristics observed in the dark layers, testifying to the reducing conditions in the basin. Variations in the rock magnetic properties of the sediments are strongly correlated with global oxygen isotope fluctuations, with glacial stages characterized by a lower magnetic mineral content and a coarser magnetic grain size relative to interglacial stages. Major downcore changes in the magnetic properties observed at Site 794 can be related to changes in the oceanographic conditions of the basin associated with the flow of the warm Tsushima Current into the Japan Sea at about 0.35-0.40 Ma ago.
Resumo:
A brief (~150 kyr) period of widespread global average surface warming marks the transition between the Paleocene and Eocene epochs, ~56 million years ago. This so-called "Paleocene-Eocene thermal maximum" (PETM) is associated with the massive injection of 13C-depleted carbon, reflected in a negative carbon isotope excursion (CIE). Biotic responses include a global abundance peak (acme) of the subtropical dinoflagellate Apectodinium. Here we identify the PETM in a marine sedimentary sequence deposited on the East Tasman Plateau at Ocean Drilling Program (ODP) Site 1172 and show, based on the organic paleothermometer TEX86, that southwest Pacific sea surface temperatures increased from ~26 °C to ~33°C during the PETM. Such temperatures before, during and after the PETM are >10 °C warmer than predicted by paleoclimate model simulations for this latitude. In part, this discrepancy may be explained by potential seasonal biases in the TEX86 proxy in polar oceans. Additionally, the data suggest that not only Arctic, but also Antarctic temperatures may be underestimated in simulations of ancient greenhouse climates by current generation fully coupled climate models. An early influx of abundant Apectodinium confirms that environmental change preceded the CIE on a global scale. Organic dinoflagellate cyst assemblages suggest a local decrease in the amount of river run off reaching the core site during the PETM, possibly in concert with eustatic rise. Moreover, the assemblages suggest changes in seasonality of the regional hydrological system and storm activity. Finally, significant variation in dinoflagellate cyst assemblages during the PETM indicates that southwest Pacific climates varied significantly over time scales of 103 - 104 years during this event, a finding comparable to similar studies of PETM successions from the New Jersey Shelf.
Resumo:
In October 1979, a period of heavy rainfall along the French Riviera was followed by the collapse of the Ligurian continental slope adjacent to the airport of Nice, France. A body of slope sediments, which was shortly beforehand affected by construction work south of the airport, was mobilized and traveled hundreds of kilometers downslope into the Var submarine canyon and, eventually, into the deep Ligurian basin. As a direct consequence, the construction was destroyed, seafloor cables were torn, and a small tsunami hit Antibes shortly after the failure. Hypotheses regarding the trigger mechanism include (i) vertical loading by construction of an embankment south of the airport, (ii) failure of a layer of sensitive clay within the slope sequence, and (iii) excess pore fluid pressures from charged aquifers in the underground. Over the previous decades, both the sensitive clay layers and the permeable sand and gravel layers were sampled to detect freshened waters. In 2007, the landslide scar and adjacent slopes were revisited for high-resolution seafloor mapping and systematic sampling. Results from half a dozen gravity and push cores in the shallow slope area reveal a limited zone of freshening (i.e. groundwater influence). A 100-250 m wide zone of the margin shows pore water salinities of 5-50% SW concentration and depletion in Cl, SO4, but Cr enrichment, while cores east or west of the landslide scar show regular SW profiles. Most interestingly, the three cores inside the landslide scar hint towards a complex hydrological system with at least two sources for groundwater. The aquifer system also showed strong freshening after a period of several months without significant precipitation. This freshening implies that charged coarse-grained layers represent a permanent threat to the slope's stability, not just after periods of major rainfall such as in October 1979.
Resumo:
Sea surface temperatures (SSTs) derived from the alkenone UK'37) record of Quaternary sediments may be subject to bias if algae with different temperature sensitivities have contributed to the sedimentary alkenone record. The alkenone-derived SST records are usually based on a UK'37-temperature relationship which was measured in culture experiments using the coccolithophorid Emiliania huxleyi (F.G. Prahl, L.A. Muehlhausen and D.L. Zahnle, 1988. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim. Cosmochim. Acta 52, 2303-2310). To assess possible effects of past species changes on the UK'37-temperature signal, we have analyzed long-chain alkenones and coccolithophorids in a late Quaternary sediment core from the Walvis Ridge and compared the results to SST estimates extracted from the d18O record of the planktonic foraminifer Globigerinoides ruber. Alkenones and isotopes were determined over the entire 400-kyr core record while the coccolithophorid study was confined to the last 200 kyr when the most pronounced changes in alkenone content occurred. Throughout oxygen-isotope stages 6 and 5, species of the genus Gephyrocapsa were the predominating coccolithophorids. E. huxleyi began to increase systematically in relative abundance since the stage 5/4 transition, became dominant over Gephyrocapsa spp. during stage 3 and reached the highest abundances in the Holocene. Carbon-normalized alkenone concentrations are inversely related to the relative abundances of E. huxleyi, and directly related to that of Gephyrocapsa spp., suggesting that species of this genus were the principal alkenone contributors to the sediments. Nevertheless, SST values obtained from the UK'37-temperature relationship for E. huxleyi compare favourably to the isotope-derived temperatures. The recently reported UK'37-temperature relationship for a single strain of Gephyrocapsa oceanica (J.K. Volkman. S.M. Barrett, S.I. Blackburn and E.L. Sikes, 1995. Alkenones in Gephyrocapsa oceanica: Implications for studies of paleoclimate. Geochim. Cosmochim. Acta 59, 513-520) produces unrealistically high SST values indicating that the temperature response of the examined strain is not typical for the genus Gephyrocapsa. This is supported by the C37:C38, alkenone ratios of the sediments which are comparable to average ratios reported for E. huxleyi, but significantly higher than for the G. oceanica strain. Most notably, the general accordance of the alkenone characteristics between sediments and E. huxleyi persists through stages 8 to 5 and even in times that predate the first appearance of this species (268 ka; H.R. Thierstein, K.R. Geitzenauer and B. Molfino, 1977. Global synchroneity of late Quaternary coccolith datum levels: Validation by oxygen isotopes. Geology 5, 400-404). Our results suggest that UK'37-temperature relationships based on E. huxleyi produce reasonable paleo-SST estimates even for late Quaternary periods when this species was scarce or absent because other alkenone-synthesizing algae, e.g. of the genus Gephyrocapsa.
Resumo:
Grain-size, mineral and chemical compositions of suspended particulate matter (SPM) from waters of the Severnaya (North) Dvina River mouth area during the spring flood in May 2004 is studied. Data published on composition of riverine SPM in the White Sea basin are very poor. The spring flood period when more than half of annual runoff is supplied from the river to the sea in during short time is understood more poorly. The paper considers comparison results of the grain size compositions of SPM and bottom sediments. Data of laser and hydraulic techniques of grain size analysis are compared. Short-period variations of SPM concentration and composition representing two diurnal peaks of the tide level are studied. It is found that SPM is mainly transferred during the spring flood as mineral aggregates up to 40 µm diameter. Sandy-silty fraction of riverine SPM settles in delta branches and channels, and bulk of clay-size material is supplied to the sea. Mineral and chemical compositions of SPM from the North Dvina River are determined by supply of material from the drainage basin. This material is subjected to intense mechanic separation during transfer to the sea. Key regularities of formation of mineral composition of SPM during the flood time are revealed. Effect of SPM grain size composition on distribution of minerals and chemical elements in study in the dynamic system of the river mouth area are characterized.
Resumo:
The surface water hydrography along the western Iberian margin, as part of the North Atlantic's eastern boundary upwelling system, consists of a complex, seasonally variable system of equatorward and poleward surface and subsurface currents and seasonal upwelling. Not much information exists to ascertain if the modern current and productivity patterns subsisted under glacial climate conditions, such as during marine isotope stage (MIS) 2, and how North Atlantic meltwater events, especially Heinrich events, affected them. To help answer these questions we are combining stable isotope records of surface to subsurface dwelling planktonic foraminifer species with sea surface temperature and export productivity data for four cores distributed along the western and southwestern Iberian margin (MD95-2040, MD95-2041, MD99-2336, and MD99-2339). The records reveals that with the exception of the Heinrich events and Greenland Stadial (GS) 4 hydrographic conditions along the western Iberian margin were not much different from the present. During the Last Glacial Maximum (LGM), subtropical surface and subsurface waters penetrated poleward to at least 40.6°N (site MD95-2040). Export productivity was, in general, high on the western margin during the LGM and low in the central Gulf of Cadiz, in agreement with the modern situation. During the Heinrich events and GS 4, on the other hand, productivity was high in the Gulf of Cadiz and suppressed in the upwelling regions along the western margin where a strong halocline inhibited upwelling. Heinrich event 1 had the strongest impact on the hydrography and productivity off Iberia and was the only period when subarctic surface waters were recorded in the central Gulf of Cadiz. South of Lisbon (39°N), the impact of the other Heinrich events was diminished, and not all of them led to a significant cooling in the surface waters. Thus, climatic impacts of Heinrich events highly varied with latitude and the prevailing hydrographic conditions in this region.
Resumo:
Continuous sedimentary records from an eastern Mediterranean cold-water coral ecosystem thriving in intermediate water depths (~600 m) reveal a temporary extinction of cold-water corals during the Early to Mid Holocene from 11.4-5.9 cal kyr BP. Benthic foraminiferal assemblage analysis shows low-oxygen conditions of 2 ml l**-1 during the same period, compared to bottom-water oxygen values of 4-5 ml l**-1 before and after the coral-free interval. The timing of the corals' demise coincides with the sapropel S1 event, during which the deep eastern Mediterranean basin turned anoxic. Our results show that during the sapropel S1 event low oxygen conditions extended to the rather shallow depths of our study site in the Ionian Sea and caused the cold-water corals temporary extinction. This first evidence for the sensitivity of cold-water corals to low oceanic oxygen contents suggests that the projected expansion of tropical oxygen minimum zones resulting from global change will threaten cold-water coral ecosystems in low latitudes in the same way that ocean acidification will do in the higher latitudes.
Resumo:
An essentially complete Paleogene record was recovered on the Central and Southern Kerguelen plateaus (55°-59°S) in a calcareous biofacies. Recovery deteriorated in the middle Eocene and down to the upper Paleocene because of the presence of interbedded cherts and chalks. The stratigraphic distribution of about 70 taxa of planktonic foraminifers recovered at Sites 747-749 is reported in this paper. Faunas exhibited fairly high diversity (approximately 20-25 species) in the early Eocene, followed by a gradual reduction in diversity in the middle Eocene. A brief incursion of tropical keeled morozovellids occurred near the Paleocene/Eocene boundary, similar to that recorded on the Maud Rise (ODP Sites 689 and 690). The high-latitude Paleogene zonal scheme developed for ODP Leg 113 sites has been adopted (with minor modifications) for the lower Eocene-Oligocene part of the Kerguelen Plateau record. A representative Oligocene (polarity chronozones 7-13) and late Eocene-late middle Eocene (questionably polarity chronozones 16-18) magnetostratigraphic record has allowed the calibration of several biostratigraphic datum levels to the standard Global Polarity Time Scale (GPTS) and established their essential synchrony between low and high latitudes.
Resumo:
Astronomical tuning of sedimentary records to precise orbital solutions has led to unprecedented resolution in the geological time scale. However, the construction of a consistent astronomical time scale for the Paleocene is controversial due to uncertainties in the recognition of the exact number of 405-kyr eccentricity cycles and accurate correlation between key records. Here, we present a new Danian integrated stratigraphic framework using the land-based Zumaia and Sopelana hemipelagic sections from the Basque Basin and deep-sea records drilled during Ocean Drilling Program (ODP) Legs 198 (Shatsky Rise, North Pacific) and 208 (Walvis Ridge, South Atlantic) that solves previous discrepancies. The new coherent stratigraphy utilises composite images from ODP cores, a new whole-rock d13C isotope record at Zumaia and new magnetostratigraphic data from Sopelana. We consistently observe 11 405-kyr eccentricity cycles in all studied Danian successions. We achieve a robust correlation of bioevents and stable isotope events between all studied sections at the ~100-kyr short-eccentricity level, a prerequisite for paleoclimatic interpretations. Comparison with and subsequent tuning of the records to the latest orbital solution La2011 provides astronomically calibrated ages of 66.022 ± 0.040 Ma and 61.607 ± 0.040 Ma for the Cretaceous-Paleogene (K-Pg) and Danian-Selandian 105 (D-S) boundaries respectively. Low sedimentation rates appear common in all records in the mid-Danian interval, including conspicuous condensed intervals in the oceanic records that in the past have hampered the proper identification of cycles. The comprehensive interbasinal approach applied here reveals pitfalls in time scale construction, filtering techniques in particular, and indicates that some caution and scrutiny has to be applied when building orbital chronologies. Finally, the Zumaia section, already hosting the Selandian Global Boundary Stratotype Section and Point (GSSP), could serve as the global Danian unit stratotype in the future.
Resumo:
As an estimate of plant-available N, this data set contains measurements of inorganic nitrogen (NO3-N and NH4-N, the sum of which is termed mineral N or Nmin) determined by extraction with 1 M KCl solution of soil samples from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m of the mineral soil from each of the experimental plots in March and October 2008. In October 2008, also the plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details below) were sampled. Samples of the soil cores per plot (subplots in case of the management experiment) were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, AutoAnalyzer, Seal, Burgess Hill, United Kingdom).
Resumo:
As an estimate of plant-available N, this data set contains measurements of inorganic nitrogen (NO3-N and NH4-N, the sum of which is termed mineral N or Nmin) determined by extraction with 1 M KCl solution of soil samples from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m of the mineral soil from each of the experimental plots in March 2006. In October 2006 also the plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details below) were sampled. Measurements from the management experiment are separated into 0 to 0.08 m and 0.08 to 0.15 m. Samples of the soil cores per plot (subplots in case of the management experiment) were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, AutoAnalyzer, Seal, Burgess Hill, United Kingdom).
Resumo:
As an estimate of plant-available N, this data set contains measurements of inorganic nitrogen (NO3-N and NH4-N, the sum of which is termed mineral N or Nmin) determined by extraction with 1 M KCl solution of soil samples from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m of the mineral soil from each of the experimental plots in March and October 2007. In March and in October 2007 also the plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details below) were sampled. Samples of the soil cores per plot (subplots in case of the management experiment) were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, AutoAnalyzer, Seal, Burgess Hill, United Kingdom).