944 resultados para Genetic transcription -- Regulation
Resumo:
We have reported previously the isolation and genetic characterization of mutations in the gene encoding the largest subunit of yeast RNA polymerase II (RNAPII), which lead to 6-azauracil (6AU)-sensitive growth. It was suggested that these mutations affect the functional interaction between RNAPII and transcription-elongation factor TFIIS because the 6AU-sensitive phenotype of the mutant strains was similar to that of a strain defective in the production of TFIIS and can be suppressed by increasing the dosage of the yeast TFIIS-encoding gene, PPR2, RNAPIIs were purified and characterized from two independent 6AU-sensitive yeast mutants and from wild-type (wt) cells. In vitro, in the absence of TFIIS, the purified wt polymerase and the two mutant polymerases showed similar specific activity in polymerization, readthrough at intrinsic transcriptional arrest sites and nascent RNA cleavage. In contrast to the wt polymerase, both mutant polymerases were not stimulated by the addition of a 3-fold molar excess of TFIIS in assays of promoter-independent transcription, readthrough or cleavage. However, stimulation of the ability of the mutant RNAPIIs to cleave nascent RNA and to read through intrinsic arrest sites was observed at TFIIS:RNAPII molar ratios greater than 600:1. Consistent with these findings, the binding affinity of the mutant polymerases for TFIIS was found to be reduced by more than 50-fold compared with that of the wt enzyme. These studies demonstrate that TFIIS has an important role in the regulation of transcription by yeast RNAPII and identify a possible binding site for TFIIS on RNAPII.
Resumo:
The 1.4-kb downstream region from a nitrilase gene (nitA) of an actinomycete Rhodococcus rhodochrous J1, which is industrially in use, was found to be required for the isovaleronitrile-dependent induction of nitrilase synthesis in experiments using a Rhodococcus-Escherichia coli shuttle vector pK4 in a Rhodococcus strain. Sequence analysis of the 1.4-kb region revealed the existence of an open reading frame (nitR) of 957 bp, which would encode a protein with a molecular mass of 35,100. Deletion of the central and 3'-terminal portion of nitR resulted in the complete loss of nitrilase activity, demonstrating that nitR codes for a transcriptional positive regulator in nitA expression. The deduced amino acid sequence of nitR showed similarity to a positive regulator family including XylS from Pseudomonas putida and AraC from E. coli. By Northern blot analysis, the 1.4-kb transcripts for nitA were detected in R. rhodochrous J1 cells cultured in the presence of isovaleronitrile, but not those cultured in the absence of isovaleronitrile. The transcriptional start site for nitA was mapped to a C residue located 26 bp upstream of its translational start site. Deletion analysis to define the nitA promoter region suggested the possible participation of an inverted repeat sequence, centered on base pair -52, in induction of nitA transcription.
Resumo:
The VHL tumor suppressor gene is inactivated in patients with von Hippel-Lindau disease and in most sporadic clear cell renal carcinomas. Although VHL protein function remains unclear, VHL does interact with the elongin BC subunits in vivo and regulates RNA polymerase II elongation activity in vitro by inhibiting formation of the elongin ABC complex. Expression of wild-type VHL in renal carcinoma cells with inactivated endogenous VHL resulted in unaltered in vitro cell growth and decreased vascular endothelial growth factor (VEGF) mRNA expression and responsiveness to serum deprivation. VEGF is highly expressed in many tumors, including VHL-associated and sporadic renal carcinomas, and it stimulates neoangiogenesis in growing solid tumors. Despite 5-fold differences in VEGF mRNA levels, VHL overexpression did not affect VEGF transcription initiation or elongation as would have been suggested by VHL-elongin association. These results suggest that VHL regulates VEGF expression at a post-transcriptional level and that VHL inactivation in target cells causes a loss of VEGF suppression, leading to formation of a vascular stroma.
Resumo:
Membrane depolarization of NG108 cells gives rapid (< 5 min) activation of Ca2+/calmodulin-dependent protein kinase IV (CaM-KIV), as well as activation of c-Jun N-terminal kinase (JNK). To investigate whether the Ca2+-dependent activation of mitogen-activated protein kinases (ERK, JNK, and p38) might be mediated by the CaM kinase cascade, we have transfected PC12 cells, which lack CaM-KIV, with constitutively active mutants of CaM kinase kinase and/or CaM-KIV (CaM-KKc and CaM-KIVc, respectively). In the absence of depolarization, CaM-KKc transfection had no effect on Elk-dependent transcription of a luciferase reporter gene, whereas CaM-KIVc alone or in combination with CaM-KKc gave 7- to 10-fold and 60- to 80-fold stimulations, respectively, which were blocked by mitogen-activated protein (MAP) kinase phosphatase cotransfection. When epitope-tagged constructs of MAP kinases were co-transfected with CaM-KKc plus CaM-KIVc, the immunoprecipitated MAP kinases were activated 2-fold (ERK-2) and 7- to 10-fold (JNK-1 and p38). The JNK and p38 pathways were further investigated using specific c-Jun or ATF2-dependent transcriptional assays. We found that c-Jun/ATF2-dependent transcriptions were enhanced 7- to 10-fold by CaM-KIVc and 20- to 30-fold by CaM-KKc plus CaM-KIVc. In the case of the Jun-dependent transcription, this effect was not due to direct phosphorylation of c-Jun by activated CaM-KIV, since transcription was blocked by a dominant-negative JNK and by two MAP kinase phosphatases. Mutation of the phosphorylation site (Thr196) in CaM-KIV, which mediates its activation by CaM-KIV kinase, prevented activation of Elk-1, c-Jun, and ATF2 by the CaM kinase cascade. These results establish a new Ca2+-dependent mechanism for regulating MAP kinase pathways and resultant transcription.
Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice.
Resumo:
The tet regulatory system in which doxycycline (dox) acts as an inducer of specifically engineered RNA polymerase II promoters was transferred into transgenic mice. Tight control and a broad range of regulation spanning up to five orders of magnitude were monitored dependent on the dox concentration in the water supply of the animals. Administration of dox rapidly induces the synthesis of the indicator enzyme luciferase whose activity rises over several orders of magnitude within the first 4 h in some organs. Induction is complete after 24 h in most organs analyzed. A comparable regulatory potential was revealed with the tet regulatory system where dox prevents transcription activation. Directing the synthesis of the tetracycline-controlled transactivator (tTA) to the liver led to highly specific regulation in hepatocytes where, in presence of dox, less than one molecule of luciferase was detected per cell. By contrast, a more than 10(5)-fold activation of the luciferase gene was observed in the absence of the antibiotic. This regulation was homogeneous throughout but stringently restricted to hepatocytes. These results demonstrate that both tetracycline-controlled transcriptional activation systems provide genetic switches that permit the quantitative control of gene activities in transgenic mice in a tissue-specific manner and, thus, suggest possibilities for the generation of a novel type of conditional mutants.
Resumo:
Studies of gene regulation have revealed that several transcriptional regulators can switch between activator and repressor depending upon both the promoter and the cellular context. A relatively simple prokaryotic example is illustrated by the Escherichia coli CytR regulon. In this system, the cAMP receptor protein (CRP) assists the binding of RNA polymerase as well as a specific negative regulator, CytR. Thus, CRP functions either as an activator or as a corepressor. Here we show that, depending on promoter architecture, the CRP/CytR nucleoprotein complex has opposite effects on transcription. When acting from a site close to the DNA target for RNA polymerase, CytR interacts with CRP to repress transcription, whereas an interaction with CRP from appropriately positioned upstream binding sites can result in formation of a huge preinitiation complex and transcriptional activation. Based on recent results about CRP-mediated regulation of transcription initiation and the finding that CRP possesses discrete surface-exposed patches for protein-protein interaction with RNA polymerase and CytR, a molecular model for this dual regulation is discussed.
Resumo:
Many biological processes rely upon protein-protein interactions. Hence, detailed analysis of these interactions is critical for their understanding. Due to the complexities involved, genetic approaches are often needed. In yeast and phage, genetic characterizations of protein complexes are possible. However, in multicellular organisms, such characterizations are limited by the lack of powerful selection systems. Herein we describe genetic selections that allow single amino acid changes that disrupt protein-protein interactions to be selected from large libraries of randomly generated mutant alleles. The strategy, based on a yeast reverse two-hybrid system, involves a first-step negative selection for mutations that affect interaction, followed by a second-step positive selection for a subset of these mutations that maintain expression of full-length protein (two-step selection). We have selected such mutations in the transcription factor E2F1 that affect its ability to heterodimerize with DP1. The mutations obtained identified a putative helix in the marked box, a region conserved among E2F family members, as an important determinant for interaction. This two-step selection procedure can be used to characterize any interaction domain that can be tested in the two-hybrid system.
Resumo:
Two zygotic genes, twist and snail, are indispensable for the correct establishment of the mesoderm primordium in the early Drosophila embryo. They are also needed for morphogenesis and differentiation of the mesoderm. Both genes code for transcription factors with different, albeit complementary, functions. Therefore, to understand the early development of the mesoderm, it will be necessary to identify and study the genes regulated by twist and snail. We have searched for downstream genes using a subtractive cDNA library enriched in sequences expressed in the mesoderm. We have isolated sequences that correspond to 13 novel early mesoderm genes. These novel genes show a variety of expression patterns and also differ in their dependence on twist and snail functions. This indicates that the regulation of early gene activity in the mesoderm is more complex than previously thought.
Resumo:
Epigenetic alterations in the genome of tumor cells have attracted considerable attention since the discovery of widespread alterations in DNA methylation of colorectal cancers over 10 years ago. However, the mechanism of these changes has remained obscure. el-Deiry and coworkers [el-Deiry, W. S., Nelkin, B. D., Celano, P., Yen, R. C., Falco, J. P., Hamilton, S. R. & Baylin, S. B. (1991) Proc. Natl. Acad. Sci. USA 88, 3470-3474], using a quantitative reverse transcription-PCR assay, reported 15-fold increased expression of DNA methyltransferase (MTase) in colon cancer, compared with matched normal colon mucosa, and a 200-fold increase in MTase mRNA levels compared with mucosa of unaffected patients. These authors suggested that increases in MTase mRNA levels play a direct pathogenetic role in colon carcinogenesis. To test this hypothesis, we developed a sensitive quantitative RNase protection assay of MTase, linear over three orders of magnitude. Using this assay on 12 colorectal carcinomas and matched normal mucosal specimens, we observed a 1.8- to 2.5-fold increase in MTase mRNA levels in colon carcinoma compared with levels in normal mucosa from the same patients. There was no significant difference between the normal mucosa of affected and unaffected patients. Furthermore, when the assay was normalized to histone H4 expression, a measure of S-phase-specific expression, the moderate increase in tumor MTase mRNA levels was no longer observed. These data are in contrast to the previously reported results, and they indicate that changes in MTase mRNA levels in colon cancer are nonspecific and compatible with other markers of cell proliferation.
Resumo:
The B-line presumptive muscle cells of ascidian embryos have extensive potential for self-differentiation dependent on determinants prelocalized in the myoplasm of fertilized eggs. Ascidian larval muscle cells therefore provide an experimental system with which to explore an intrinsic genetic program for autonomous specification of embryonic cells. Experiments with egg fragments suggested that maternal mRNAs are one of the components of muscle determinants. Expression of larval muscle actin genes begins as early as the 32-cell stage, prior to the developmental fate restriction of the cells. The timing of initiation of the actin gene expression proceeds the expression of an ascidian homologue of vertebrate MyoD by a few hours. Mutations in the proximal E-box of the 5' flanking region of the actin genes did not alter the promoter activity for muscle-specific expression of reporter gene. These results, together with results of deletion constructs of fusion genes, suggest that muscle determinants regulate directly, or indirectly via regulatory factors other than MyoD, the transcription of muscle-specific structural genes leading to the terminal differentiation.
Resumo:
Members of the MyoD family of muscle-specific basic helix-loop-helix (bHLH) proteins function within a genetic pathway to control skeletal muscle development. Mutational analyses of these factors suggested that their DNA binding domains mediated interaction with a coregulator required for activation of muscle-specific transcription. Members of the myocyte enhancer binding factor 2 (MEF2) family of MADS-box proteins are expressed at high levels in muscle and neural cells and at lower levels in several other cell types. MEF2 factors are unable to activate muscle gene expression alone, but they potentiate the transcriptional activity of myogenic bHLH proteins. This potentiation appears to be mediated by direct interactions between the DNA binding domains of these different types of transcription factors. Biochemical and genetic evidence suggests that MEF2 factors are the coregulators for myogenic bHLH proteins. The presence of MEF2 and cell-specific bHLH proteins in other cell types raises the possibility that these proteins may also cooperate to regulate other programs of cell-specific gene expression. We present a model to account for such cooperative interactions.
Resumo:
Current evidence on the long-term evolutionary effect of insertion of sequence elements into gene regions is reviewed, restricted to cases where a sequence derived from a past insertion participates in the regulation of expression of a useful gene. Ten such examples in eukaryotes demonstrate that segments of repetitive DNA or mobile elements have been inserted in the past in gene regions, have been preserved, sometimes modified by selection, and now affect control of transcription of the adjacent gene. Included are only examples in which transcription control was modified by the insert. Several cases in which merely transcription initiation occurred in the insert were set aside. Two of the examples involved the long terminal repeats of mammalian endogenous retroviruses. Another two examples were control of transcription by repeated sequence inserts in sea urchin genomes. There are now six published examples in which Alu sequences were inserted long ago into human gene regions, were modified, and now are central in control/enhancement of transcription. The number of published examples of Alu sequences affecting gene control has grown threefold in the last year and is likely to continue growing. Taken together, all of these examples show that the insertion of sequence elements in the genome has been a significant source of regulatory variation in evolution.
Resumo:
Boundary or insulator elements set up independent territories of gene activity by establishing higher order domains of chromatin structure. The gypsy retrotransposon of Drosophila contains an insulator element that represses enhancer-promoter interactions and is responsible for the mutant phenotypes caused by insertion of this element. The gypsy insulator inhibits the interaction of promoter-distal enhancers with the transcription complex without affecting the functionality of promoter-proximal enhancers; in addition, these sequences can buffer a transgene from chromosomal position effects. Two proteins have been identified that bind gypsy insulator sequences and are responsible for their effects on transcription. The suppressor of Hairy-wing [su(Hw)] protein affects enhancer function both upstream and downstream of its binding site by causing a silencing effect similar to that of heterochromatin. The modifier of mdg4 [mod(mdg4)] protein interacts with su(Hw) to transform this bi-directional repression into the polar effect characteristic of insulators. These effects seem to be modulated by changes in chromatin structure.
Resumo:
Interpretation of quantitative trait locus (QTL) studies of agronomic traits is limited by lack of knowledge of biochemical pathways leading to trait expression. To more fully elucidate the biological significance of detected QTL, we chose a trait that is the product of a well-characterized pathway, namely the concentration of maysin, a C-glycosyl flavone, in silks of maize, Zea mays L. Maysin is a host-plant resistance factor against the corn earworm, Helicoverpa zea (Boddie). We determined silk maysin concentrations and restriction fragment length polymorphism genotypes at flavonoid pathway loci or linked markers for 285 F2 plants derived from the cross of lines GT114 and GT119. Single-factor analysis of variance indicated that the p1 region on chromosome 1 accounted for 58.0% of the phenotypic variance and showed additive gene action. The p1 locus is a transcription activator for portions of the flavonoid pathway. A second QTL, represented by marker umc 105a near the brown pericarp1 locus on chromosome 9, accounted for 10.8% of the variance. Gene action of this region was dominant for low maysin, but was only expressed in the presence of a functional p1 allele. The model explaining the greatest proportion of phenotypic variance (75.9%) included p1, umc105a, umc166b (chromosome 1), r1 (chromosome 10), and two epistatic interaction terms, p1 x umc105a and p1 x r1. Our results provide evidence that regulatory loci have a central role and that there is a complex interplay among different branches of the flavonoid pathway in the expression of this trait.