933 resultados para Genetic association
Resumo:
Genome-wide association studies (GWAS) have rapidly become a standard method for disease gene discovery. Many recent GWAS indicate that for most disorders, only a few common variants are implicated and the associated SNPs explain only a small fraction of the genetic risk. The current study incorporated gene network information into gene-based analysis of GWAS data for Crohn's disease (CD). The purpose was to develop statistical models to boost the power of identifying disease-associated genes and gene subnetworks by maximizing the use of existing biological knowledge from multiple sources. The results revealed that Markov random field (MRF) based mixture model incorporating direct neighborhood information from a single gene network is not efficient in identifying CD-related genes based on the GWAS data. The incorporation of solely direct neighborhood information might lead to the low efficiency of these models. Alternative MRF models looking beyond direct neighboring information are necessary to be developed in the future for the purpose of this study.^
Resumo:
Background. The mTOR pathway is commonly altered in human tumors and promotes cell survival and proliferation. Preliminary evidence suggests this pathway's involvement in chemoresistance to platinum and taxanes, first line therapy for epithelial ovarian cancer. A pathway-based approach was used to identify individual germline single nucleotide polymorphisms (SNPs) and cumulative effects of multiple genetic variants in mTOR pathway genes and their association with clinical outcome in women with ovarian cancer. ^ Methods. The case-series was restricted to 319 non-Hispanic white women with high grade ovarian cancer treated with surgery and platinum-based chemotherapy. 135 SNPs in 20 representative genes in the mTOR pathway were genotyped. Hazard ratios (HRs) for death and Odds ratios (ORs) for failure to respond to primary therapy were estimated for each SNP using the multivariate Cox proportional hazards model and multivariate logistic regression model, respectively, while adjusting for age, stage, histology and treatment sequence. A survival tree analysis of SNPs with a statistically significant association (p<0.05) was performed to identify higher order gene-gene interactions and their association with overall survival. ^ Results. There was no statistically significant difference in survival by tumor histology or treatment regimen. The median survival for the cohort was 48.3 months. Seven SNPs were significantly associated with decreased survival. Compared to those with no unfavorable genotypes, the HR for death increased significantly with the increasing number of unfavorable genotypes and women in the highest risk category had HR of 4.06 (95% CI 2.29–7.21). The survival tree analysis also identified patients with different survival patterns based on their genetic profiles. 13 SNPs on five different genes were found to be significantly associated with a treatment response, defined as no evidence of disease after completion of primary therapy. Rare homozygous genotype of SNP rs6973428 showed a 5.5-fold increased risk compared to the wild type carrying genotypes. In the cumulative effect analysis, the highest risk group (individuals with ≥8 unfavorable genotypes) was significantly less likely to respond to chemotherapy (OR=8.40, 95% CI 3.10–22.75) compared to the low risk group (≤4 unfavorable genotypes). ^ Conclusions. A pathway-based approach can demonstrate cumulative effects of multiple genetic variants on clinical response to chemotherapy and survival. Therapy targeting the mTOR pathway may modify outcome in select patients.^
Resumo:
Atherosclerosis is widely accepted as a complex genetic phenotype and is the usual cause of cardiovascular disease, the world’s leading killer. Genetic factors have been proven to be important risk contributors for atherosclerosis and much work has been done to identify promising candidates that might play a role in the development of atherosclerosis. It is well known that many independent replications are needed to unequivocally establish a valid genotype-phenotype association across different populations before the findings are extended to clinical settings and to the expensive follow-up studies designed to identify causal genetic variants. Aiming to replicate the association with atherosclerosis in the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study, we assessed the relationship of 32 atherosclerosis candidate SNPs to atherosclerosis in the PDAY cohort, consisting of AA and EA young people aged 15-34 years who died of non-medical causes. Two association studies, a whole sample study and a 1:1 matched case control study were performed by use of multiple linear regression and logistic regression analyses, respectively. For the whole sample association study, 32 SNPs among 2,650 individuals (1,369 AA and 1,281 EA) were tested for the association with six early atherosclerosis phenotypes: abdominal aorta fatty streaks, abdominal aorta raised lesions, right coronary artery fatty streaks, right coronary artery raised lesions, thoracic aorta fatty streaks, and thoracic aorta raised lesions. For the matched case-control association study, 337 case-control paired samples were included; cases were chosen with the highest total raised lesion scores from the studied population, while controls were randomly selected from individuals that had no raised lesions and matched to cases by age, gender and race. Sixteen SNPs in 13 genes were found to be significantly associated with atherosclerosis in at least one of the PDAY association studies. Among these 16 findings: eight SNPs (rs9579646, rs6053733, rs3849150, rs10499903, rs2148079, rs5073691, rs10116277, and rs17228212) successfully replicated previous results, six SNPs (rs17222814, rs10811661, rs7028570, rs7291467, rs16996148 and rs10401969) were reported as new findings exclusive to our study, the last two of the 16 SNPs, rs501120 and rs6922269, showed either intriguing or conflicting result. SNP rs17222814 in ALOX5AP and SNP rs3849150 in LRRC18 were consistently associated with atherosclerosis in both prior and the two PDAY association studies. SNP rs3849150 was also identified to be highly correlated with a non-synonymous coding SNP, rs17772611, which may damage the protein (polyphen score = 0.996), suggesting that SNP rs17772611 may be the causal functional variant.^ In conclusion, our study added more support for the association of these candidate genes with atherosclerosis. SNPs rs3849150 and rs17772611 of LRRC18, as well as SNP rs17222814 of ALOX5AP, were the most significant findings from our study, and may be ranked among the best for further study.^