990 resultados para Gene Induction
Resumo:
Friedreich ataxia (FA) Is caused by decreased frataxin expression that results in mitochondrial iron (Fe) overload. However, the role of frataxin in mammalian Fe metabolism remains unclear. In this investigation we examined the function of frataxin in Fe metabolism by implementing a well-characterized model of erythroid differentiation, namely, Friend cells induced using dimethyl sulfoxide (DMSO). We have characterized the changes in frataxin expression compared to molecules that play key roles in Fe metabolism (the transferrin receptor [TfR] and the Fe transporter Nramp2) and hemoglobinization (beta-globin). DMSO induction of hemoglobinization results in a marked decrease in frataxin gene (Frda) expression and protein levels. To a lesser extent, Nramp2 messenger RNA (mRNA) levels were also decreased on erythroid differentiation, whereas TfR and beta-globin mRNA levels increased. Intracellular Fe depletion using desferrioxamine or pyridoxal isonicotinoyl hydrazone, which chelate cytoplasmic or cytoplasmic and mitochondrial Fe pools, respectively, have no effect on frataxin expression. Furthermore, cytoplasmic or mitochondrial Fe loading of induced Friend cells with ferric ammonium citrate, or the heme synthesis inhibitor, succinylacetone, respectively, also had no effect on frataxin expression. Although frataxin has been suggested by others to be a mitochondrial ferritin, the lack of effect of intracellular Fe levels on frataxin expression is not consistent with an Fe storage role. Significantly, protoporphyrin IX down-regulates frataxin protein levels, suggesting a regulatory role of frataxin in Fe or heme metabolism. Because decreased frataxin expression leads to mitochondrial Fe loading in FA, our data suggest that reduced frataxin expression during erythroid differentiation results in mitochondrial Fe sequestration for heme biosynthesis. (C) 2002 by The American Society of Hematology.
Resumo:
The mouse hnRNP A2/B1/B0 gene has been cloned using a PCR-based strategy and sequenced. Analysis of this sequence showed that the gene organization closely follows that of the human orthologue with 12 exons and 11 introns. The hnRNP A2/B1/B0 gene gives rise to four splice variants through alternative splicing of exons 2 and 9. RT-PCR assays indicated that all splice variants were expressed in mouse brain, skin, and stomach tissues of varying ages, although their ratios to one another varied with age and tissue type. We also identified a small subset of all polyadenylated splice variants that included intron 11, which shows 94% sequence identity between human and mouse. Several processed pseudogenes were identified in the mouse genome. A search of the mouse genome databases located five pseudogenes, four of. which are presumed to be non-functional because of the presence of premature stop codons, large deletions or rearrangements within the coding region. The fifth, which possesses putative promoter elements and has a coding sequence identical to that of the hnRNP A2 mRNA, variant, may be functional. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The bacterial lacZ gene is commonly used as a reporter for the in vivo analysis of gene regulation in transgenic mice. However, several laboratories have reported poor detection of beta-galactosidase (the lacZ gene product) using histochemical techniques, particularly in skin. Here we report the difficulties we encountered in assessing lacZ expression in transgenic keratinocytes using classic X-gal histochemical protocols in tissues shown to express the transgene by mRNA in situ hybridization. We found that lacZ reporter gene expression could be reliably detected in frozen tissue sections by immunofluorescence analysis using a beta-galactosidase-specific antibody. Moreover, we were able to localize both transgene and endogenous gene products simultaneously using double-label immunofluorescence. Our results suggest that antibody detection of beta-galactosidase should be used to verify other assays of lacZ expression, particularly where low expression levels are suspected or patchy expression is observed.
Resumo:
We evaluated the efficiency of callus induction and plantlet regeneration from hypocotyl explants of broccoli (Brassica oleracea var. italica). The cultivars were ‘Marathon’, ‘Greenbelt’, and ‘Shogun’. Transformation success was not affected by the presence of tobacco feeder-cell layers on the culture media. The frequency of shoot regeneration was greater from 10-d-old hypocotyls than from 14-d-old hypocotyls. Both ‘Marathon’ and ‘Greenbelt’ had higher potentials for tissue regeneration than did ‘Shogun’. We found that for transformation selection, the optimum concentration was either 50 mg/L kanamycin or 100 mg/L genetkin.
Resumo:
Iron homeostasis is altered in Parkinson's disease (PD). The HFE protein is an important regulator of cellular iron homeostasis and variations within this gene can result in iron overload and the disorder known as hereditary haemochromatosis. We studied the Cys282Tyr single nucleotide polymorphism as a genetic risk factor for PD in two distinct and separately collected cohorts of Australian PD patients and controls. In the combined cohort comprising 438 PD patients and 485 control subjects, we revealed an odds ratio for possession of the 282Tyr allele of 0.61 (95% confidence interval, Cl = 0.42-0.90, P = 0.011) from univariate chi-squared and 0.59 (95% Cl = 0.39-0.90, P = 0.014) after logistic regression analyses (correcting for potential confounding factors). These results suggest that possession of the 282Tyr allele may offer some protection against the development of PD. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
We sequenced part of the mitochondrial 12S ribosomal RNA gene of 23 specimens of Sarcoptes scabiei from eight wombats, one dog and three humans. Twelve of the 326 nucleotide positions varied among these mites and there were nine haplotypes (sequences) that differed by 1-8 nucleotides. Phylogenetic analyses indicated that these mites were from two lineages: (1) mites from wombats from Victoria, Australia, and mites from the humans and dog from the Northern Territory, Australia (haplotypes 1-4, 9); and (2) mites from the humans and dog from the Northern Territory (haplotypes 5-8). Mites from the three different hosts (wombats, a dog and humans) had not diverged phylogenetically; rather, these mites had similar 12S sequences. Thus, we conclude that these mites from wombats, humans and a dog are closely related, and that they diverged from a common ancestor relatively recently. This conclusion is consistent with the argument that people and/or their dogs introduced to Australia the S. scabiei mites that infect wombats Australia. So, S. scabiei, which has been blamed for the extinction of populations of wombats in Australia, may be a parasitic mite that was introduced to Australia with people and/or their dogs. These data show that the mitochondrial 12S rRNA gene may be a suitable population marker of S. scabiei from wombats, dogs and humans in Australia.
Resumo:
Regulation of the expression of dimethylsulfoxide (DMSO) reductase was investigated in the purple phototrophic bacterium Rhodobacter capsulatus. Under phototrophic, anaerobic conditions with malate as carbon source, DMSO caused an approximately 150-fold induction of DMSO reductase activity. The response regulator DorR was required for DMSO-dependent induction and also appeared to slightly repress DMSO reductase expression in the absence of substrate. Likewise, when pyruvate replaced malate as carbon source there was an induction of DMSO reductase activity in cells grown at low light intensity (16 W m(-2)) and again this induction was dependent on DorR. The level of DMSO reductase activity in aerobically grown cells was elevated when pyruvate replaced malate as carbon source. One possible explanation for this is that acetyl phosphate, produced from pyruvate, may activate expression of DMSO reductase by direct phosphorylation of DorR, leading to low levels of induction of dor gene expression in the absence of DMSO. A mutant lacking the global response regulator of photosynthesis gene expression, RegA, exhibited high levels of DMSO reductase in the absence of DMSO, when grown phototrophically with malate as carbon source. This suggests that phosphorylated RegA acts as a repressor of dor operon expression under these conditions. It has been proposed elsewhere that RegA-dependent expression is negatively regulated by the cytochrome cbb(3) oxidase. A cco mutant lacking cytochrome cbb(3) exhibited significantly higher levels of Phi[dorA::lacZ] activity in the presence of DMSO compared to wild-type cells and this is consistent with the above model. Pyruvate restored DMSO reductase expression in the regA mutant to the same pattern as found in wild-type cells. These data suggest that R. capsulatus contains a regulator of DMSO respiration that is distinct from DorR and RegA, is activated in the presence of pyruvate, and acts as a negative regulator of DMSO reductase expression.
Resumo:
In order to study the effect of arsenic on DNA damage, Sprague-Dawley rats were dosed with sodium arsenite (10 mg/kg) with or without 800 mug of benzo(a)pyrene (BP) by intramammilary injection. The animals were sacrificed on day 1, 3, 5, 10 and 27 and the mammary gland tissues were collected for DNA adduct measurement using a P-32 post-labeling assay. Animals dosed with arsenic alone did not show any DNA adducts. DNA adduct levels in rats dosed with BP alone reached a maximum level by day 5, reducing to 13% of this level by day 27. Adduct levels in rats dosed with arsenic and BP also reached a maximum by day 5 but only 80% of the level observed in the BP group. However, 84% of this amount still remained by day 27. The First Nucleotide Change (FNC) technique was used for the screening of 115 samples of various tissues from mice that had been chronically exposed to sodium arsenate for over 2 years revealed that inorganic arsenic did not attack the two putative hotspots (codons 131 and 154) of the hOGG1 gene. These results support the hypothesis that arsenic exerts its biological activity through DNA repair inhibition. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
As in eutherians, maturation of the fetal pituitary and adrenal glands together with an increase in prostaglandin and mesotocin or oxytocin production initiates birth in marsupials. in this study, prostaglandin (Lutalyse) or oxytocin (Syntocinon) were administered to pregnant bandicoots at 05:00 h on the calculated day of birth and the resultant effects were filmed for analysis. The administration of prostaglandin caused the bandicoot to adopt the birth position several minutes after injection (n = 2). However, the bandicoot did not give birth for several hours. Birth occurred at a similar time of day to that observed for untreated bandicoots (n = 7), between 08:00 h and 12:00 h. After an injection of oxytocin, the bandicoot assumed the birth position and birth occurred within several minutes. The young were alive while still connected to their allantoic stalks. However, they were unable to attach to the teats and did not survive (n = 4). The induced young were the colour of venous blood and died soon after the umbilicus was separated, indicating that the cardiopulmonary system of these neonates was underdeveloped and inadequate to maintain life. The results from this study demonstrate that prostaglandin is required to prepare the bandicoot for birth, and mesotocin is required for contraction of the uterus and for birth to occur.
Resumo:
It is generally accepted that two major gene pools exist in cultivated common bean (Phaseolus vulgaris L.), a Middle American and an Andean one. Some evidence, based on unique phaseolin morphotypes and AFLP analysis, suggests that at least one more gene pool exists in cultivated common bean. To investigate this hypothesis, 1072 accessions from a common bean core collection from the primary centres of origin, held at CIAT, were investigated. Various agronomic and morphological attributes (14 categorical and 11 quantitative) were measured. Multivariate analyses, consisting of homogeneity analysis and clustering for categorical data, clustering and ordination techniques for quantitative data and nonlinear principal component analysis for mixed data, were undertaken. The results of most analyses supported the existence of the two major gene pools. However, the analysis of categorical data of protein types showed an additional minor gene pool. The minor gene pool is designated North Andean and includes phaseolin types CH, S and T; lectin types 312, Pr, B and K; and mostly A5, A6 and A4 types alpha-amylase inhibitor. Analysis of the combined categorical data of protein types and some plant categorical data also suggested that some other germplasm with C type phaseolin are distinguished from the major gene pools.
Resumo:
Voltage-gated sodium channels drive the initial depolarization phase of the cardiac action potential and therefore critically determine conduction of excitation through the heart. In patients, deletions or loss-of-function mutations of the cardiac sodium channel gene, SCN5A, have been associated with a wide range of arrhythmias including bradycardia (heart rate slowing), atrioventricular conduction delay, and ventricular fibrillation. The pathophysiological basis of these clinical conditions is unresolved. Here we show that disruption of the mouse cardiac sodium channel gene, Scn5a, causes intrauterine lethality in homozygotes with severe defects in ventricular morphogenesis whereas heterozygotes show normal survival. Whole-cell patch clamp analyses of isolated ventricular myocytes from adult Scn5a(+/-) mice demonstrate a approximate to50% reduction in sodium conductance. Scn5a(+/-) hearts have several defects including impaired atrioventricular conduction, delayed intramyocardial conduction, increased ventricular refractoriness, and ventricular tachycardia with characteristics of reentrant excitation. These findings reconcile reduced activity of the cardiac sodium channel leading to slowed conduction with several apparently diverse clinical phenotypes, providing a model for the detailed analysis of the pathophysiology of arrhythmias.