953 resultados para Gaussian laser pulse
Resumo:
The properties of combinatorial frequency generation by two-tone Gaussian pulses incident at oblique angles on quasiperiodic (Fibonacci and Thue-Morse) stacks of binary semiconductor layers are discussed. The analysis has been performed using the self-consistent model taking into account the nonlinear dynamics of mobile charges in the layers. The effects of the stack arrangements and constituent layer parameters on the combinatorial frequency waveforms are presented for the specific structures of both types
Resumo:
We report on the unequal spacing attosecond pulse trains from relativistic surface plasmas. The surface high harmonics efficiency is determined and could be enhanced using an optimized plasma scale length and density.
Resumo:
In this work, a laser-produced plasma extreme ultraviolet source and a free electron laser were used to create Ne photo-ionized plasmas. In both cases, a radiation beam was focused onto a gas stream injected into a vacuum chamber synchronously with the radiation pulse. Extreme ultraviolet radiation from the plasma spanned a wide spectral range with pronounced maximum centered at lambda = 11 +/- 1 nm while the free electron laser pulses were emitted at a wavelength of 32 nm. The power density of the focused plasma radiation was approximately 2 x 10(7) W/cm(2) and was seven orders of magnitude lower compared with the focused free electron laser beam. Radiation fluences in both experimental conditions were comparable. Despite quite different spectral characteristics and extremely different power densities, emission spectra of both photo-ionized plasmas consist of the same spectral lines within a wavelength range of 20 to 50 nm, however, with different relative intensities of the corresponding lines. The dominating spectral lines originated from singly charged ions (Ne II); however, Ne III lines were also detected. Additionally, computer simulations of the emission spectra, obtained for photo-ionized plasmas, driven by the plasma extreme ultraviolet source, were performed. The corresponding measured and calculated spectra are presented. An electron temperature and ionic composition were estimated. Differences between the experimental spectra, obtained for both irradiation conditions, were analyzed. The differences were attributed mainly to different energies of driving photons.
Resumo:
We report on experiments aimed at the generation and characterization of solid density plasmas at the free-electron laser FLASH in Hamburg. Aluminum samples were irradiated with XUV pulses at 13.5 nm wavelength (92 eV photon energy). The pulses with duration of a few tens of femtoseconds and pulse energy up to 100 mu J are focused to intensities ranging from 10(13) to 10(17) W/cm(2). We investigate the absorption and temporal evolution of the sample under irradiation by use of XUV spectroscopy. We discuss the origin of saturable absorption, radiative decay, bremsstrahlung and ionic line emission. Our experimental results are in good agreement with hydrodynamic simulations.
Resumo:
Spatially and temporally varying neutral, ion and electron number densities have been mapped out within laser ablated plasma plumes expanding into vacuum. Ablation of a magnesium target was performed using a KrF laser, 30 ns pulse duration and 248 nm wavelength. During the initial stage of plasma expansion (t <EQ 100 ns) interferometry has been used to obtain line averaged electron number densities, for laser power densities on target in the range 1.3 - 3.0 X 108 W/cm2. Later in the plasma expansion (t equals 1 microsecond(s) ) simultaneous absorption and laser induced fluorescence spectroscopy has been used to determine 3D neutral and ion number densities, for a power density equal to 6.7 X 107 W/cm2. Two distinct regions within the plume were identified. One is a fast component (approximately 106 cm-1) consisting of ions and neutrals with maximum number densities observed to be approximately 30 and 4 X 1012 cm-3 respectively, and the second consists of slow moving neutral material at a number density of up to 1015 cm-3. Additionally a Langmuir probe has been used to obtain ion and electron number densities at very late times in the plasma expansion (1 microsecond(s) <EQ t <EQ 15 microsecond(s) ). A copper target was ablated using a Nd:YAG laser, 7.5 ns duration and 532 nm (2 (omega) ) wavelength, with a power density on target equal to 6 X 108 W/cm2. Two regions within the plume with different velocities were observed. Within a fast component (approximately 3 X 106 cms-1) electron and ion number densities of the order 5 X 1012 cm-3 were observed and within the second slower component (approximately 106 cms-1) electron and ion number densities of the order 1 - 2 X 1013 cm-3 were determined.
Resumo:
The production of neutron beams having short temporal duration is studied using ultraintense laser pulses. Laser-accelerated protons are spectrally filtered using a laser-triggered microlens to produce a short duration neutron pulse via nuclear reactions induced in a converter material (LiF). This produces a similar to 3 ns duration neutron pulse with 10(4) n/MeV/sr/shot at 0.56 m from the laser-irradiated proton source. The large spatial separation between the neutron production and the proton source allows for shielding from the copious and undesirable radiation resulting from the laser-plasma interaction. This neutron pulse compares favorably to the duration of conventional accelerator sources and should scale up with, present and future, higher energy laser facilities to produce brighter and shorter neutron beams for ultrafast probing of dense materials.
Resumo:
Ultraintense laser pulses with a few-cycle rising edge are ideally suited to accelerating ions from ultrathin foils, and achieving such pulses in practice represents a formidable challenge. We show that such pulses can be obtained using sufficiently strong and well-controlled relativistic nonlinearities in spatially well-defined near-critical-density plasmas. The resulting ultraintense pulses with an extremely steep rising edge give rise to significantly enhanced carbon ion energies consistent with a transition to radiation pressure acceleration.
Resumo:
X-ray backscatter imaging can be used for a wide range of imaging applications, in particular for industrial inspection and portal security. Currently, the application of this imaging technique to the detection of landmines is limited due to the surrounding sand or soil strongly attenuating the 10s to 100s of keV X-rays required for backscatter imaging. Here, we introduce a new approach involving a 140 MeV short-pulse (< 100 fs) electron beam generated by laser wakefield acceleration to probe the sample, which produces Bremsstrahlung X-rays within the sample enabling greater depths to be imaged. A variety of detector and scintillator configurations are examined, with the best time response seen from an absorptive coated BaF2 scintillator with a bandpass filter to remove the slow scintillation emission components. An X-ray backscatter image of an array of different density and atomic number items is demonstrated. The use of a compact laser wakefield accelerator to generate the electron source, combined with the rapid development of more compact, efficient and higher repetition rate high power laser systems will make this system feasible for applications in the field.
Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators
Resumo:
Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ∼2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.
Resumo:
Recent measurements using an X-ray Free Electron Laser (XFEL) and an Electron Beam Ion Trap at the Linac Coherent Light Source facility highlighted large discrepancies between the observed and theoretical values for the Fe XVII 3C/3D line intensity ratio. This result raised the question of whether the theoretical oscillator strengths may be significantly in error, due to insufficiencies in the atomic structure calculations. We present time-dependent spectral modeling of this experiment and show that non-equilibrium effects can dramatically reduce the predicted 3C/3D line intensity ratio, compared with that obtained by simply taking the ratio of oscillator strengths. Once these non-equilibrium effects are accounted for, the measured line intensity ratio can be used to determine a revised value for the 3C/3D oscillator strength ratio, giving a range from 3.0 to 3.5. We also provide a framework to narrow this range further, if more precise information about the pulse parameters can be determined. We discuss the implications of the new results for the use of Fe XVII spectral features as astrophysical diagnostics and investigate the importance of time-dependent effects in interpreting XFEL-excited plasmas.
Resumo:
Fast electron energy spectra have been measured for a range of intensities between 1018 Wcm−2 and 1021 Wcm−2 and for different target materials using electron spectrometers. Several experimental campaigns were conducted on peta watt laser facilities at the Rutherford Appleton Laboratory and Osaka University. In these experimental campaigns, the pulse duration was varied from 0.5 ps to 5 ps. The laser incident angle was also changed from normal incidence to 40° in p-polarized. The results show a reduction from the ponderomotive scaling on fast electrons over 1020 Wcm−2.
Resumo:
The divergent and broadband proton beams produced by the target normal sheath acceleration mechanism provide the unique opportunity to probe, in a point-projection imaging scheme, the dynamics of the transient electric and magnetic fields produced during laser-plasma interactions. Commonly such experimental setup entails two intense laser beams, where the interaction produced by one beam is probed with the protons produced by the second. We present here experimental studies of the ultra-fast charge dynamics along a wire connected to laser irradiated target carried out by employing a ‘self’ proton probing arrangement – i.e. by connecting the wire to the target generating the probe protons. The experimental data shows that an electromagnetic pulse carrying a significant amount of charge is launched along the wire, which travels as a unified pulse of 10s of ps duration with a velocity close to speed of light. The experimental capabilities and the analysis procedure of this specific type of proton probing technique are discussed.
Resumo:
High power lasers have proven being capable to produce high energy γ-rays, charged particles and neutrons, and to induce all kinds of nuclear reactions. At ELI, the studies with high power lasers will enter for the first time into new domains of power and intensities: 10 PW and 10^23 W/cm^2. While the development of laser based radiation sources is the main focus at the ELI-Beamlines pillar of ELI, at ELI-NP the studies that will benefit from High Power Laser System pulses will focus on Laser Driven Nuclear Physics (this TDR, acronym LDNP, associated to the E1 experimental area), High Field Physics and QED (associated to the E6 area) and fundamental research opened by the unique combination of the two 10 PW laser pulses with a gamma beam provided by the Gamma Beam System (associated to E7 area). The scientific case of the LDNP TDR encompasses studies of laser induced nuclear reactions, aiming for a better understanding of nuclear properties, of nuclear reaction rates in laser-plasmas, as well as on the development of radiation source characterization methods based on nuclear techniques. As an example of proposed studies: the promise of achieving solid-state density bunches of (very) heavy ions accelerated to about 10 MeV/nucleon through the RPA mechanism will be exploited to produce highly astrophysical relevant neutron rich nuclei around the N~126 waiting point, using the sequential fission-fusion scheme, complementary to any other existing or planned method of producing radioactive nuclei.
The studies will be implemented predominantly in the E1 area of ELI-NP. However, many of them can be, in a first stage, performed in the E5 and/or E4 areas, where higher repetition laser pulses are available, while the harsh X-ray and electromagnetic pulse (EMP) environments are less damaging compared to E1.
A number of options are discussed through the document, having an important impact on the budget and needed resources. Depending on the TDR review and subsequent project decisions, they may be taken into account for space reservation, while their detailed design and implementation will be postponed.
The present TDR is the result of contributions from several institutions engaged in nuclear physics and high power laser research. A significant part of the proposed equipment can be designed, and afterwards can be built, only in close collaboration with (or subcontracting to) some of these institutions. A Memorandum of Understanding (MOU) is currently under preparation with each of these key partners as well as with others that are interested to participate in the design or in the future experimental program.
Resumo:
Plusieurs décennies de recherche ont permis de mieux comprendre les effets de l’athérosclérose sur le système cardiovasculaire, d’améliorer la prévention et de développer des traitements efficaces. Les effets de l’athéroslérose sur le cerveau demeurent toutefois mal compris même si le lien entre le fonctionnement cognitif et la santé du système vasculaire est maintenant bien établi. La venue de nouvelles méthodes d’imagerie telle la microscopie laser à 2-photons (TPLM) permet d’étudier l’impact de certaines maladies sur la microvasculature cérébrale en mesurant le flux sanguin dans des vaisseaux uniques situés dans des régions cérébrales millimétriques sous la surface. Les résultats des études in vitro peuvent dorénavant être corrélés à ceux obtenus in vivo. En premier lieu, ce mémoire revoit la théorie ayant permis le développement de la TPLM qui permet de prendre des mesures hémodynamiques in vivo dans des vaisseaux de très petits calibres tels des capillaires cérébraux de souris. Par la suite, son utilisation est décrite chez des souris anesthésiées afin de comparer les mesures d’hémodynamie cérébrale tels la vitesse des globules rouges, le flux de globules rouges, le flux sanguin cérébral, l’hématocrite sanguin et le diamètre des vaisseaux. Finalement, nous avons comparé les données hémodynamiques entre des souris de 3 mois normales (WT ; n=6) et des souris atteintes d’athérosclérose précoce (ATX ; n=6). Les résultats obtenus sur un nombre total de 209 capillaires (103 pour les souris WT et 106 pour les souris ATX) démontrent que les souris ATX possèdent une vitesse des globules rouges (+40%) plus grande, un flux de globule rouge plus grand (+12%) et un flux capillaire plus élevé (+14%) sans démontrer pour aucun de ces paramètres, une différence statistiquement significative. L’hématocrite moyen (35±4% vs 33±2% ; p=0.71) et le diamètre moyen des vaisseaux (4.88±0.22μm vs 4.86±0.20μm ; p=0.23) étaient également comparables. La vitesse des globules rouges a démontré une faible corrélation avec le diamètre des vaisseaux (r=0.39) et avec le flux de globules rouges/seconde (r=0.59). En conclusion, les travaux menés dans le cadre de ce mémoire de maîtrise permettent d'envisager, grâce aux nouvelles méthodes d’imagerie cérébrale telle la TPLM, une meilleure compréhension des mécanismes hémodynamiques sous-jacents à la microcirculation cérébrale. L’effet d’une pression pulsée augmentée, tel que proposée dans l’athérosclérose reste cependant à démontrer avec cette méthode d’imagerie.
Resumo:
The propagation of pulse waves in coplanar waveguides (CPWs) is investigated, and these CPWs are assumed to be fabricated on a single -layer low- temperature co-fired ceramic (LTCC) substrate. The input pulse wave can be a Gaussian pulse or a sinusoldally modulated Gaussian pulse. Based on the standard Galerkin 's method in the spectral domain, combined with fast Fourier transform (FFT), the pulse waveform and delay in CPWs are demonstrated and compared for a second plate, oriented orthogonally to the primary planar element, thus producing a crossed planar monopole (CPM), which is simpler to produce and has lower cost than a conical monopole. In this paper, further measurements have been made on this element