975 resultados para Gas as fuel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the basis of the two-continuum model of dilute gas-solid suspensions, the dynamic behavior of inertial particles in supersonic dusty-gas flows past a blunt body is studied for moderate Reynolds numbers, when the Knudsen effect in the interphase momentum exchange is significant. The limits of the inertial particle deposition regime in the space of governing parameters are found numerically under the assumption of the slip and free-molecule flow regimes around particles. As a model problem, the flow structure is obtained for a supersonic dusty-gas point-source flow colliding with a hypersonic flow of pure gas. The calculations performed using the full Lagrangian approach for the near-symmetry-axis region and the free-molecular flow regime around the particles reveal a multi-layer structure of the dispersed-phase density with a sharp accumulation of the particles in some thin regions between the bow and termination shock waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper contains a detailed study of shock wave reflection from a wedge placed in various suspensions. In past works, the incident shock propagated initially in pure gas and the suspension started only at the leading edge of the deflecting wedge. However, in the present case the entire flow field is filled with a gas-dust suspension and the initial shock wave has steady-state structure relative to the shock front. In former studies the transmitted shock wave starts its propagation into the suspension and is reflected from the wedge at the same time. It is therefore obvious that the two unrelated processes of (2D) reflection and (1D) "transitional" relaxation occur simultaneously. In the present case the suspension behind the incident shock wave has reached steady state (i.e., it is a traveling wave) before the shock reaches the wedge leading edge. The reflection process from the deflecting wedge is studied for different dust mass loadings and different dust-particle diameter. It is shown that when the dust loading is low and the dust particle diameter is small the wave reflection pattern is similar to that observed in a similar pure gas case. In addition, an equilibrium state is reached, behind the evolved waves, very quickly. On the other hand, when the dust loading is relatively high and/or the dust particle diameter is relatively large, the observed reflection wave pattern is very different from that seen in a similar pure gas case. In such cases it takes much longer time to reach an equilibrium state behind the reflecting waves. It is also shown that the dust presence significantly affects the (gas) pressure on the wedge surface. The higher the dust loading is, the higher the pressure on the wedge surface. Suspensions composed of solid particle of different size, but having the same dust mass loading, will approach the same equilibrium pressure. However, it will take longer time to reach an equilibrium state for suspensions having large diameter particles. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A semi-gas kinetics (SGK) model for performance analyses of flowing chemical oxygen-iodine laser (COIL) is presented. In this model, the oxygen-iodine reaction gas flow is treated as a continuous medium, and the effect of thermal motions of particles of different laser energy levels on the performances of the COIL is included and the velocity distribution function equations are solved by using the double-parameter perturbational method. For a premixed flow, effects of different chemical reaction systems, different gain saturation models and temperature, pressure, yield of excited oxygen, iodine concentration and frequency-shift on the performances of the COIL are computed, and the calculated output power agrees well with the experimental data. The results indicate that the power extraction of the SGK model considering 21 reactions is close to those when only the reversible pumping reaction is considered, while different gain saturation models and adjustable parameters greatly affect the output power, the optimal threshold gain range, and the length of power extraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper describes a numerical two-way coupling model for shock-induced laminar boundary-layer flows of a dust-laden gas and studies the transverse migration of fine particles under the action of Saffman lift force. The governing equations are formulated in the dilute two-phase continuum framework with consideration of the finiteness of the particle Reynolds and Knudsen numbers. The full Lagrangian method is explored for calculating the dispersed-phase flow fields (including the number density of particles) in the regions of intersecting particle trajectories. The computation results show a significant reaction of the particles on the two-phase boundary-layer structure when the mass loading ratio of particles takes finite values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A chemical oxygen iodine laser (COIL) that operates without primary buffer gas has become a new way of facilitating the compact integration of laser systems. To clarify the properties of spatial gain distribution, three-dimensional (3-D) computational fluid dynamics (CFD) technology was used to study the mixing and reactive flow in a COIL nozzle with an interleaving jet configuration in the supersonic section. The results show that the molecular iodine fraction in the secondary flow has a notable effect on the spatial distribution of the small signal gain. The rich iodine condition produces some negative gain regions along the jet trajectory, while the lean iodine condition slows down the development of the gain in the streamwise direction. It is also found that the new configuration of an interleaving jet helps form a reasonable gain field under appropriate operation conditions. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: