943 resultados para GUIDES
Resumo:
Black shale samples of Jurassic to Cretaceous age recovered during the 'Norwegian Shelf Drilling Program' between 1987 and 1991 from Sites 7430/10-U-01 (Barents Sea), 6814/04-U-02 (Norwegian Shelf near the Lofoten) and 6307/07-U-02 (Norwegian Shelf near Trondheim) were analyzed for major and trace elements. These laminated black shales are characterized by high total organic carbon (TOC) and total sulfur (TS) contents as well as by significant enrichments in several redox-sensitive and/or sulfide-forming trace metals (Ag, Bi, Cd, Co, Cr, Cu, Mo, Ni, Re, Sb, Tl, U, V, and Zn). Enrichment factors relative to 'average shale' are comparable to those found in Cenomanian-Turonian boundary event (CTBE) black shales and Mediterranean sapropels. The Re content is high in the studied black shales, with maximum values up to 1221 ng/g. Re/Mo ratios averaging 2.3*10**-3 are close to the seawater value. High trace metal enrichments and Re/Mo ratios close to the seawater value point to a dominantly anoxic and sulfidic water column during black shale formation. Interbeds with higher Re/Mo ratios, especially in high-resolution sampled core sections, point to brief periods of suboxic conditions. Additionally, enhanced Zn concentrations in the black shales from the Barents Sea support the assumption that hydrothermal activity was also high during black shale deposition. Trace metal signatures of black shales at different drill sites on a transect along the Norwegian Shelf are not only influenced by water depth but also by their location in the boreal realm. Metal enrichments are higher in the northern compared to the southern sites. Volgian (=Tithonian 151-144 Ma BP) black shales exhibit elevated trace metal contents in comparison to their Berriasian (144-137 Ma BP) counterparts. This probably reflects a change in the circulation pattern during periods of black shale formation. Therefore different paleoceanographic conditions, probably controlled by climatic change linked to the transgression of the paleo-sealevel and the North Atlantic opening, may have developed from the Volgian to the Berriasian.
Resumo:
While onboard ship during Leg 177, we used variations in sediment physical properties (mainly percent color reflectance) in conjunction with biomagnetostratigraphy to correlate among sites and predict the position of marine isotope stages (MISs) (e.g., see fig. F11 in Shipboard Scientific Party, 1999, p. 45). Our working assumption was that physical properties of Leg 177 sediments are controlled mainly by variations in carbonate content. Previous studies of Southern Ocean sediment cores have shown that carbonate concentrations are relatively high during interglacial stages and low during glacial stages at sites located within the Polar Frontal Zone (PFZ). Today, the PFZ marks a lithologic boundary in underlying sediment separating calcareous oozes to the north and silica-rich facies to the south (Hays et al., 1976). Although there is debate whether the position of the "physical" PFZ actually moved during glacial-interglacial cycles (Charles and Fairbanks, 1990; Matsumoto et al., 2001), the "biochemical" PFZ, as expressed by the CaCO3/opal boundary in sediments, certainly migrated north during glacials and south during interglacials. This gave rise to lithologic variations that are useful for stratigraphic correlation. At Leg 177 sites located north of the PFZ and at sublysoclinal depths, we expected the same pattern of carbonate variation because cores in the Atlantic basin are marked by increased carbonate dissolution during glacial periods and increased preservation during interglacials (Crowley, 1985).